Time filter

Source Type

Barcelona, Spain

Agency: Cordis | Branch: FP7 | Program: CSA-CA | Phase: Fission-2009-2.3.3 | Award Amount: 718.35K | Year: 2010

HeLiMnet is a project aimed at integrating the R&D efforts going on within and outside Europe, in different areas of investigation In particular it is intended to create a large and strong network for the diffusion of information on the HLM technologies, exploiting the characteristics of both the new information technologies in order to create a virtual space for debates, focus groups and information exchanges and the traditional tools as workshops, seminars, information days etc. It aims, moreover, at rationalize the knowledge through the development of guidelines, protocols and standards, with particular attention to the homogenization of operational procedures in order to have a better control on the quality and comparability of the experimental data obtained in different labs. Finally, one other HeLiMnet goal is the appraisal of the liquid metal technology research area, through the analysis of approaches and activities going on at national and international level in different areas of investigation (fission (LFR, ADS, SFR), neutron spallation targets and fusion), the identification of possible cooperation, the definition of existing gaps and possible future R&D activities to cover these gaps.

Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2013.3.6-01 | Award Amount: 11.70M | Year: 2013

The Nano3Bio project convenes a consortium of world renowned experts from 8 EU universities, 1 large company, and 14 SME, to develop biotechnological production systems for nanoformulated chitosans. Chitosans, chitin-derived polysaccharides varying in their degree of polymerisation (DP), degree of acetylation (DA), and pattern of acetylation (PA), are among the most versatile and most promising biopolymers, with excellent physico-chemical and material properties, and a wide range of biological functionalities, but their economic potential is far from being exploited due to i) problems with reproducibility of biological activities as todays chitosans are rather poorly defined mixtures, and ii) the threat of allergen contamination from their typical animal origin. The Nano3Bio project will overcome these hurdles to market entry and penetration by producing in vitro and in vivo defined oligo- and polymers with controlled, tailor-made DP, DA, and PA. Genes for chitin synthases, chitin deacetylases, and transglycosylating chitinases/chitosanases will be mined from different (meta)genomic sources and heterologously expressed, the recombinant enzymes characterized and optimized by protein engineering through rational design and molecular evolution, e.g. targeting engineered glycosynthases. These enzymes and genes will be used for in vitro and in vivo biosynthesis in microbial and microalgal systems, focusing on bacteria and diatoms. The bioinspired chitosans will be formulated into biomineralised hydrogels, nanoparticles, nanoscaffolds, etc., to impart novel properties, including by surface nano-imprinting, and will be bench-marked against their conventional counterparts in a variety of cell based assays and routine industrial tests for e.g. cosmetics and pharma markets. The process will be accompanied by comprehensive life cycle assessments including thorough legal landscaping, and by dissemination activities targeted to the scientific community and the general public.

Institute Quimic Of Sarria | Date: 2012-05-09

Disclosed are nanoparticles comprising a block copolymer and optionally one or more active agent(s), compositions comprising said nanoparticles and methods of preparing said nanoparticles. The block copolymer comprises blocks (i) a first polymer that is a polyester or polyamide and (ii) a second polymer comprising a hydrocarbon chain containing ester or ether bonds with hydroxyl number 10. The active agent(s) may be present within the nanoparticles or on the surfaces of the nanoparticles. The nanoparticles may optionally be associated with a surface-modifying moiety such that they are useful as drug delivery and molecular imaging devices. The surface-modifying moiety may target the nanoparticles to a desired target, cell, tissue or biomarker.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ICT-2011.3.2 | Award Amount: 10.77M | Year: 2012

Microfluidics and lab-on-chip is an enabling technology with great growth potential. The life science industry has come to realise the trends and potential of miniaturisation which already have effected the information and communication industry in the last decades. Combinations of microfluidics, microelectronics and microoptics provide striking opportunities for advancing biomedical research and creating new markets for the medical sciences industry. In terms of economical and ecologically worthwhile processes, complex Micro-Nano Bio Systems (MNBS) have greatest potential to enhance processes for cell-based assays, chemical analytics and medical diagnostics.\nHowever, there are three main challenges for such (MNBS) market to overcome which hamper growth of the market: First, a lack of economical micro-fabrication methods hamper the implementation of lab-on-chip solutions in an industrial scale. Second, inefficient interfaces between laboratory equipment and mircofluidic devices cause a lack of interoperability. Third, there is no integrated manufacturing platform which provides flexible and cheap design and re-design opportunities.\n\nML will overcome these three main challenges by developing a cost efficient production system for new generation MNBS, combining microfluidics, optics and microelectronics. The devices will base on a multi layer concept. The overall function of the smart device will be split in several subfunctions, which can be of fluidic, optical or electronic nature. Multiple foils will transfer the functionality into technical solutions. Economic roll-to-roll processes will be developed for the production of micro fluidic and optic functional layers.\nML will provide a design and manufacturing platform for the production of sophisticated devices which combine microfluidics, optics and microelectronics. ML devices will compact devices with increased performance at lower prices compared to existing MNBS.

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2008-2.3-1 | Award Amount: 2.93M | Year: 2010

Heart failure is the end-stage of many cardiovascular diseases, but the leading cause is the presence of a large scar due acute to myocardial infarction. Current therapeutic treatments under development consist in cellular cardiomyoplasty where myocardial cells or stem cells are implanted alone or encapsulated in natural scaffolds (collagens) and grafted onto infarcted ventricles with the hope that cells will contribute to the generation of new myocardial tissue. This approach seems to have a beneficial effect although it is not completely understood and optimized, yet. Thus, the urgent need of better therapeutic platforms is imminent. In view of this, we created a small interdisciplinary consortium (RECATABI) with experts in areas such as material sciences, tissue engineering, stem cell technologies and clinical cardiovascular research. RECATABI will integrate and synergise their capacities in order to obtain a novel clinical platform to regenerate necrotic ischemic tissues after cardiac infarct with a simple one-time patch technology application. The consortium will accomplish this by fabricating nanoscale engineered biomaterials and scaffolds that will match the exact biomechanical and biophysical requirements of the implanted tissue. In addition, the construct may induce rapid vascularization to ensure tissue remodelling and regeneration into a newly functional myocardium. The regenerative capacity of the implants loaded with pre-adapted cells (biomechanically and biophysically trained) will be assessed in small (rodents) and large (sheep) animal models.

Discover hidden collaborations