Entity

Time filter

Source Type

Liancourt, France

Sanchez David R.Y.,French National Center for Scientific Research | Sanchez David R.Y.,University Paris Diderot | Combredet C.,French National Center for Scientific Research | Sismeiro O.,Institute PasteurParis | And 10 more authors.
eLife | Year: 2016

The RIG-I-like receptors (RLRs) play a major role in sensing RNA virus infection to initiate and modulate antiviral immunity. They interact with particular viral RNAs, most of them being still unknown. To decipher the viral RNA signature on RLRs during viral infection, we tagged RLRs (RIG-I, MDA5, LGP2) and applied tagged protein affinity purification followed by next-generation sequencing (NGS) of associated RNA molecules. Two viruses with negative-and positive-sense RNA genome were used: measles (MV) and chikungunya (CHIKV). NGS analysis revealed that distinct regions of MV genome were specifically recognized by distinct RLRs: RIG-I recognized defective interfering genomes, whereas MDA5 and LGP2 specifically bound MV nucleoprotein-coding region. During CHIKV infection, RIG-I associated specifically to the 3’ untranslated region of viral genome. This study provides the first comparative view of the viral RNA ligands for RIG-I, MDA5 and LGP2 in the presence of infection. © Sanchez David et al. Source


Fregni G.,French Institute of Health and Medical Research | Fregni G.,University of Paris Descartes | Fregni G.,University of Lausanne | Freire Maresca A.,Service de Medecine Interne | And 12 more authors.
Virology Journal | Year: 2013

Background: Both the human immunodeficiency virus (HIV) and hepatitis C virus (HCV), either alone or as coinfections, persist in their hosts by destroying and/or escaping immune defenses, with high morbidity as consequence. In some cases, however, a balance between infection and immunity is reached, leading to prolonged asymptomatic periods. We report a case of such an indolent co-infection, which could be explained by the development of a peculiar subset of Natural Killer (NK) cells. Results: Persistently high peripheral levels of CD56+ NK cells were observed in a peculiar hemophiliac HIV/HCV co-infected patient with low CD4 counts, almost undetectable HIV viral load and no opportunistic infections. Thorough analysis of NK-subsets allowed to identify a marked increase in the CD56bright/dim cell ratio and low numbers of CD16+/CD56- cells. These cells have high levels of natural cytotoxicity receptors but low NCR2 and CD69, and lack both CD57 and CD25 expression. The degranulation potential of NK-cells which correlates with target cytolysis was atypically mainly performed by CD56bright NK-cells, whereas no production of interferon γ (IFN-γ) was observed following NK activation by K562 cells. Conclusions: These data suggest that the expansion and lytic capacity of the CD56bright NK subset may be involved in the protection of this " rare " HIV/HCV co-infected hemophiliac A patient from opportunistic infections and virus-related cancers despite very low CD4+ cell counts. © 2013 Fregni et al. Source


Ginouves M.,University of French Guiana | Veron V.,University of French Guiana | Musset L.,CNR Institute of Neuroscience | Legrand E.,CNR Institute of Neuroscience | And 9 more authors.
Malaria Journal | Year: 2015

Background: The two main plasmodial species in French Guiana are Plasmodium vivax and Plasmodium falciparum whose respective prevalence influences the frequency of mixed plasmodial infections. The accuracy of their diagnosis is influenced by the sensitivity of the method used, whereas neither microscopy nor rapid diagnostic tests allow a satisfactory evaluation of mixed plasmodial infections. Methods: In the present study, the frequency of mixed infections in different part of French Guiana was determined using real time PCR, a sensitive and specific technique. Results: From 400 cases of malaria initially diagnosed by microscopy, real time PCR showed that 10.75 % of the cases were mixed infections. Their prevalence varied considerably between geographical areas. The presence, in equivalent proportions, of the two plasmodial species in eastern French Guiana was associated with a much higher prevalence of mixed plasmodial infections than in western French Guiana, where the majority of the population was Duffy negative and thus resistant to vivax malaria. Conclusion: Clinicians must be more vigilant regarding mixed infections in co-endemic P. falciparum/P. vivax areas, in order to deliver optimal care for patients suffering from malaria. This may involve the use of rapid diagnostic tests capable of detecting mixed infections or low density single infections. This is important as French Guiana moves towards malaria elimination. © 2015 Ginouves et al. Source


Gehre L.,French National Center for Scientific Research | Gorgette O.,Institute PasteurParis | Perrinet S.,French National Center for Scientific Research | Prevost M.-C.,Institute PasteurParis | And 5 more authors.
eLife | Year: 2016

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown. We reveal that host glycogen stores shift to the vacuole through two pathways: bulk uptake from the cytoplasmic pool, and de novo synthesis. We provide evidence that bacterial glycogen metabolism enzymes are secreted into the vacuole lumen through type 3 secretion. Our data bring strong support to the following scenario: bacteria co-opt the host transporter SLC35D2 to import UDP-glucose into the vacuole, where it serves as substrate for de novo glycogen synthesis, through a remarkable adaptation of the bacterial glycogen synthase. Based on these findings we propose that parasitophorous vacuoles not only offer protection but also provide a microorganism-controlled metabolically active compartment essential for redirecting host resources to the pathogens. © Gehre et al. Source


Pontier S.M.,Institute PasteurParis | Schweisguth F.,Institute PasteurParis
Current Biology | Year: 2015

Summary Gamete compatibility is fundamental to sexual reproduction. Wolbachia are maternally inherited endosymbiotic bacteria that manipulate gamete compatibility in many arthropod species. In Drosophila, the fertilization of uninfected eggs by sperm from Wolbachia-infected males often results in early developmental arrest. This gamete incompatibility is called cytoplasmic incompatibility (CI). CI is highest in young males, suggesting that Wolbachia affect sperm properties during male development. Here, we show that Wolbachia modulate testis development. Unexpectedly, this effect was associated with Wolbachia infection in females, not males. This raised the possibility that females influenced testis development by communicating with males prior to adulthood. Using a combinatorial rearing protocol, we provide evidence for such a female-to-male communication during metamorphosis. This communication involves the perception of female pheromones by male olfactory receptors. We found that this communication determines the compatibility range of sperm. Wolbachia interfere with this female-to-male communication through changes in female pheromone production. Strikingly, restoring this communication partially suppressed CI in Wolbachia-infected males. We further identified a reciprocal male-to-female communication at metamorphosis that restricts the compatibility range of female gametes. Wolbachia also perturb this communication by feminizing male pheromone production. Thus, Wolbachia broaden the compatibility range of eggs, promoting thereby the reproductive success of Wolbachia-infected females. We conclude that pheromone communication between pupae regulates gamete compatibility and is sensitive to Wolbachia in Drosophila. © 2015 Elsevier Ltd. Source

Discover hidden collaborations