Time filter

Source Type

PubMed | Center for Research and Innovation, University of Florence and Institute Pasteur Of Montevideo Montevideo
Type: | Journal: Frontiers in genetics | Year: 2015

Non-targeted metagenomics offers the unprecedented possibility of simultaneously investigate the microbial profile and the genetic capabilities of a sample by a direct analysis of its entire DNA content. The assessment of the microbial taxonomic composition is frequently obtained by mapping reads to genomic databases that, although growing, are still limited and biased. Here we present riboFrame, a novel procedure for microbial profiling based on the identification and classification of 16S rDNA sequences in non-targeted metagenomics datasets. Reads overlapping the 16S rDNA genes are identified using Hidden Markov Models and a taxonomic assignment is obtained by nave Bayesian classification. All reads identified as ribosomal are coherently positioned in the 16S rDNA gene, allowing the use of the topology of the gene (i.e., the secondary structure and the location of variable regions) to guide the abundance analysis. We tested and verified the effectiveness of our method on simulated ribosomal data, on simulated metagenomes and on a real dataset. riboFrame exploits the taxonomic potentialities of the 16S rDNA gene in the context of non-targeted metagenomics, giving an accurate perspective on the microbial profile in metagenomic samples.

PubMed | University of Buenos Aires and Institute Pasteur Of Montevideo Montevideo
Type: | Journal: Frontiers in cellular neuroscience | Year: 2016

Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis.Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes.

Loading Institute Pasteur Of Montevideo Montevideo collaborators
Loading Institute Pasteur Of Montevideo Montevideo collaborators