Entity

Time filter

Source Type

Saint-André-lez-Lille, France

Sonneville R.,Paris West University Nanterre La Defense | Guidoux C.,Paris West University Nanterre La Defense | Barrett L.,University College London | Viltart O.,Pasteur Institute of Lille | And 11 more authors.
Brain Pathology | Year: 2010

Impaired arginine vasopressin (AVP) synthesis and release by the neurohypophyseal system, which includes the neurohypophysis and magnocellular neurons of the paraventricular and supraoptic nuclei, have been postulated in septic shock, but changes in this system have never been assessed in human septic shock, and only partially experimentally. We investigated AVP synthesis and release by the neurohypophyseal system in 9 patients who died from septic shock and 10 controls, and in 20 rats with fecal peritonitis-induced sepsis and 8 sham-operation controls. Ten rats died spontaneously from septic shock, and the others were sacrificed. In patients with septic shock, as in rats that died spontaneously following sepsis induction, AVP immunohistochemical expression was decreased in the neurohypophysis and supraoptic magnocellular neurons, whereas it was increased in the paraventricular magnocellular neurons. No significant change was observed in AVP messenger RiboNucleic Acid (mRNA) expression assessed by in situ hybridization in either paraventricular or supraoptic magnocellular cells. This study shows that both in human and experimental septic shock, AVP posttranscriptional synthesis and transport are differently modified in the magnocellular neurons of the supraoptic and paraventricular nuclei. This may account for the inappropriate AVP release in septic shock and suggests that distinct pathogenic mechanisms operate in these nuclei. © 2009 International Society of Neuropathology. Source


Zannad F.,Nancy University Hospital Center | De Backer G.,Ghent University | Graham I.,Adelaide and Meath Hospital | Lorenz M.,Frankfurt University | And 8 more authors.
Fundamental and Clinical Pharmacology | Year: 2012

The aim of this paper is to review and discuss current methods of risk stratification for cardiovascular disease (CVD) prevention, emerging biomarkers, and imaging techniques, and their relative merits and limitations. This report is based on discussions that took place among experts in the area during a special CardioVascular Clinical Trialists workshop organized by the European Society of Cardiology Working Group on Cardiovascular Pharmacology and Drug Therapy in September 2009. Classical risk factors such as blood pressure and low-density lipoprotein cholesterol levels remain the cornerstone of risk estimation in primary prevention but their use as a guide to management is limited by several factors: (i) thresholds for drug treatment vary with the available evidence for cost-effectiveness and benefit-to-risk ratios; (ii) assessment may be imprecise; (iii) residual risk may remain, even with effective control of dyslipidemia and hypertension. Novel measures include C-reactive protein, lipoprotein-associated phospholipase A 2, genetic markers, and markers of subclinical organ damage, for which there are varying levels of evidence. High-resolution ultrasound and magnetic resonance imaging to assess carotid atherosclerotic lesions have potential but require further validation, standardization, and proof of clinical usefulness in the general population. In conclusion, classical risk scoring systems are available and inexpensive but have a number of limitations. Novel risk markers and imaging techniques may have a place in drug development and clinical trial design. However, their additional value above and beyond classical risk factors has yet to be determined for risk-guided therapy in CVD prevention. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de Pharmacologie et de Thérapeutique. Source


Guyot K.,Pasteur Institute of Lille
Eurosurveillance | Year: 2010

In 2002, the French Food Safety Agency drew attention to the lack of information on the prevalence of human cryptosporidiosis in the country. Two years later, the ANOFEL Cryptosporidium National Network (ACNN) was set up to provide public health authorities with data on the incidence and epidemiology of human cryptosporidiosis in France. Constituted on a voluntary basis, ACNN includes 38 hospital parasitology laboratories (mainly in university hospitals). Each laboratory is engaged to notify new cases of confirmed human cryptosporidiosis, store specimens (e.g. stools, duodenal aspirates or biopsies) and related clinical and epidemiological data, using datasheet forms. From January 2006 to December 2009, 407 cryptosporidiosis cases were notified in France and 364 specimens were collected. Of the notified cases, 74 were children under four years of age, accounting for 18.2%. HIV infected and immunocompetent patients represented 38.6% (n=157) and 28% (n=114) of cases, respectively. A marked seasonal pattern was observed each year, with increased number of cases in mid to late summer and the beginning of autumn. Genotyping of 345 isolates from 310 patients identified C. parvum in 168 (54.2%) cases, C. hominis in 113 (36.4%) and other species in 29 (9.4%), including C. felis (n=15), C. meleagridis (n=4), C. canis (n=4), Cryptosporidium chipmunk genotype (n=1), Cryptosporidium rabbit genotype (n=1) and new Cryptosporidium genotypes (n=4). These data represent the first multisite report of laboratory-confirmed cases of cryptosporidiosis in France. Source


Boulanger D.,Montpellier University | Sarr J.B.,British Petroleum | Fillol F.,Montpellier University | Sokhna C.,IRD | And 7 more authors.
Malaria Journal | Year: 2010

Background. Intermittent preventive treatment in children (IPTc) is a promising strategy to control malaria morbidity. A significant concern is whether IPTc increases children's susceptibility to subsequent malaria infection by altering their anti-Plasmodium acquired immunity. Methods. To investigate this concern, IgG antibody (Ab) responses to Plasmodium falciparum schizont extract were measured in Senegalese children (6 months-5 years old) who had received three rounds of IPTc with artesunate + sulphadoxine-pyrimethamine (or placebo) at monthly intervals eight months earlier. Potential confounding factors, such as asexual malaria parasitaemia and nutritional status were also evaluated. Results. Firstly, a bivariate analysis showed that children who had received IPTc had lower anti-Plasmodium IgG Ab levels than the non-treated controls. When epidemiological parameters were incorporated into a multivariate regression, gender, nutritional status and haemoglobin concentration did not have any significant influence. In contrast, parasitaemia, past malaria morbidity and increasing age were strongly associated with a higher specific IgG response. Conclusions. The intensity of the contacts with P. falciparum seems to represent the main factor influencing anti-schizont IgG responses. Previous IPTc does not seem to interfere with this parasite-dependent acquired humoral response eight months after the last drug administration. © 2010 Boulanger et al; licensee BioMed Central Ltd. Source


Whiteson K.L.,San Diego State University | Bailey B.,San Diego State University | Bergkessel M.,California Institute of Technology | Conrad D.,University of California at San Diego | And 12 more authors.
American Journal of Respiratory and Critical Care Medicine | Year: 2014

A continuously mixed series of microbial communities inhabits various points of the respiratory tract, with community composition determined by distance from colonization sources, colonization rates, and extinction rates. Ecology and evolution theory developed in the context of biogeography is relevant to clinical microbiology and could reframe the interpretation of recent studies comparing communities from lung explant samples, sputum samples, and oropharyngeal swabs. We propose an island biogeography model of the microbial communities inhabiting different niches in human airways. Island biogeography as applied to communities separated by time and space is a useful parallel for exploring microbial colonization of healthy and diseased lungs, with the potential to inform ourunderstanding ofmicrobial community dynamics and the relevance of microbes detected in different sample types. In this perspective, we focus on the intermixed microbial communities inhabiting different regions of the airways of patients with cystic fibrosis. Copyright © 2014 by the American Thoracic Society. Source

Discover hidden collaborations