Time filter

Source Type

Hone D.W.E.,Institute of Vertebrate Palaeontology and Palaeoanthropology | Watabe M.,Hayashibara Museum of Natural science
Acta Palaeontologica Polonica

Feeding traces for carnivorous theropod dinosaurs are typically rare but can provide important evidence of prey choice and mode of feeding. Here we report a humerus of the hadrosaurine Saurolophus which was heavily damaged from feeding attributed to the giant tyrannosaurine Tarbosaurus. The bone shows multiple bites made in three distinctive styles termed "punctures", "drag marks" and "bite-and-drag marks". The distribution of these bites suggest that the animal was actively selecting which biting style to use based on which part of the bone was being engaged. The lack of damage to the rest of the otherwise complete and articulated hadrosaur strongly implies that this was a scavenging event, the first reported for a tyrannosaurid, and not feeding at a kill site. Source

Fraser N.C.,National Museums Scotland | Rieppel O.,Field Museum of Natural History | Chun L.,Institute of Vertebrate Palaeontology and Palaeoanthropology
Journal of Vertebrate Paleontology

A new protorosaur is described on the basis of a single specimen from the Ladinian of southern China. Although it has been greatly crushed, it still preserves clear details of the skull and axial skeleton. It possesses a neck that is longer than the trunk and is similar to tanystropheids in having 12 or 13 cervicals. Unusual among protorosaurs, the new form has an elongate snout. It also lacks a clear thyroid fenestra, although there is a slight separation of the pubis and ischium close to the pubic symphysis. The new form adds to the growing diversity and disparity of protorosaur taxa from the Middle Triassic of southern China. © 2013 by the Society of Vertebrate Paleontology. Source

Tong H.,Institute of Vertebrate Palaeontology and Palaeoanthropology | Danilov I.,Russian Academy of Sciences | Ye Y.,Zigong Dinosaur Museum | Ouyang H.,Chongqing Museum of Natural History | Peng G.,Zigong Dinosaur Museum
Geological Magazine

The turtle fauna of the Middle Jurassic Xiashaximiao Formation in the Sichuan Basin and the type series of Chengyuchelys baenoides Young & Chow, 1953 are revised. By the absence of a mesoplastron and other shell characters, both the holotype and paratype of Chengyuchelys baenoides belong to the family Xinjiangchelyidae and come probably from the Upper Jurassic Shangshaximiao Formation. The Middle Jurassic turtle assemblage of the Sichuan Basin is composed of two entities: the Bashuchelyidae fam. nov. (Bashuchelys gen. nov., Chuannanchelys gen. nov.) and Protoxinjiangchelys gen. nov. on the one hand, and Sichuanchelys on the other hand, with the former as the dominant group. Bashuchelyids and xinjiangchelyids are closely related to one another, while Sichuanchelys is more primitive and has no shared apomorphic features with bashuchelyids. The whole assemblage appears to be endemic to the Sichuan Basin at genus level and distinct from the Late Jurassic turtle fauna of the same basin in its relict nature and absence of the Polycryptodira. © Cambridge University Press 2011. Source

Hone D.W.E.,University College Dublin | Hone D.W.E.,Institute of Vertebrate Palaeontology and Palaeoanthropology | Hone D.W.E.,Queen Mary, University of London | Choiniere J.N.,American Museum of Natural History | And 2 more authors.
Acta Palaeontologica Polonica

A near complete and articulated parvicursorine pes from the Campanian Wulansuhai Formation is described. This pes is referred to the genus Linhenykus and is one of the first foot skeletons to be described for a derived alvarezsaur, providing new information on the first digit of the pes. The evolution of a laterally directed flange of the anterior face of the distal third metatarsal in arctometatarsalian taxa is described and discussed. This flange may have increased stability of the foot during cursorial locomotion and may also provide useful taxonomic and systematic data. Copyright © 2013 D.W.E. Hone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations