Time filter

Source Type

Fleishman G.D.,New Jersey Institute of Technology | Fleishman G.D.,RAS Ioffe Physical - Technical Institute | Kuznetsov A.A.,Institute of Solar Terrestrial Physics
Astrophysical Journal | Year: 2014

Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasi-steady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa- and n-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these non-Maxwellian distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa- and n-distributions, and discuss their properties, which are in fact remarkably different from each other and from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution, but decreases with τ for n-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. © 2014. The American Astronomical Society. All rights reserved. Source

Mikhailova O.S.,Institute of Solar Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics | Year: 2014

The paper is devoted to the spatial structure of ULF (ultra-low frequency) Pc1 oscillations with the admixture of heavy ions taken into account. Due to dip of the Alfvén velocity in the plasmapause region and the admixture of heavy ions, the wave is located in the two-dimensional resonator located near the plasmapause on the radial coordinate and near the magnetic equator along the magnetic field line. For the purposes of a qualitative analysis of the parallel resonator, the WKB approximation in the coordinate along the magnetic field line was used to obtain the wave eigenfrequencies. © 2013 Elsevier Ltd. Source

Zharkova V.V.,University of Bradford | Kuznetsov A.A.,Institute of Solar Terrestrial Physics | Siversky T.V.,University of Bradford
Astronomy and Astrophysics | Year: 2010

Aims.The paper aims are to simulate steady-state distributions of electrons beams precipitating in collisional and Ohmic losses with pitch angle anisotropy into a flaring atmosphere with converging magnetic field and to apply these to the interpretation of HXR photon spectra, directivity and polarization observed for different photon energies and flare positions on the solar disk. Methods.Summary approximation method is applied to a time-dependent Fokker-Planck equation by splitting the temporal derivative equally between the derivatives in depth, energy and pitch angles and finding the solutions in forward and backward directions for each variable. Results. For softer beams, there is a noticeable flattening of the photon spectra at lower energies caused by the self-induced electric field that increases for larger viewing angles. For the models with an electric field, the HXR emission with lower energies (30 keV) becomes directed mainly upwards at upper atmospheric levels owing to the increased number of particles moving upwards, while in deeper layers it again becomes directed downwards. The polarization maximum shifts to higher energies with every precipitation depth approaching 25 keV for the models with pure collisions and 100 keV for the models with return currents. At deeper layers, the polarization decreases because of the isotropization of electrons by collisions. The maximum polarization is observed at the viewing angle of 90., becoming shifted to lower angles for softer beams. The integrated polarization and directivity shows a dependence on a magnetic field convergence for harder beams, while for softer beams the directivity is strongly affected by the self-induced electric field changing from a downward motion to an upward one at upper atmospheric depths. Conclusions. The proposed precipitation model for an electron beam with wider pitch angle dispersion of 0.2 taking into account collisional and Ohmic losses allowed us to fit the double power law HXR photon spectra with a spectrum flattening at lower energies observed in the flares of 20 and 23 July 2002. The observed directivity of HXR photons of 20 keV derived for a large number of flares located from the disk center to limb is also reproduced well by the theoretical directivity calculated for an electron beam with a very narrow pitch angle dispersion of 0.02. The simulated polarization of this narrowly-directed electron beam fits up to 90% of all the available polarimetric observations carried out at various locations across the solar disk. © ESO 2010. Source

Plyusnina L.A.,Institute of Solar Terrestrial Physics
Solar Physics | Year: 2010

There are two types of active longitudes (ALs) in terms of the distribution of sunspot areas: long-lived and intra-cyclic ALs. The rotation period of the long-lived ALs has been determined by a new method in this paper. The method is based on the property of ALs to be maintained over several cycles of solar activity. The daily values of sunspot areas for 1878 - 2005 are analyzed. It is shown that the AL positions remain almost constant over a period of about ten cycles, from cycle 13 to cycle 22. The rotation period was found to be 27.965 days during this period. The dispersion in AL positions is about 26° from cycle to cycle, which is half of the dispersion observed in the Carrington system. The ALs in the growth phase of the activity cycle are more stable and pronounced. The excess in solar activity in the ALs over adjacent longitudinal intervals is about 12 - 14%. It is shown that only one long-lived AL can be observed at one time on the Sun, as a rule. © Springer Science+Business Media B.V. 2010. Source

Kuker M.,Leibniz Institute for Astrophysics Potsdam | Rudiger G.,Leibniz Institute for Astrophysics Potsdam | Kitchatinov L.L.,Institute of Solar Terrestrial Physics
Astronomy and Astrophysics | Year: 2011

A series of stellar models of spectral type G is computed to study the rotation laws resulting from mean-field equations. The rotation laws of the slowly rotating Sun, the rapidly rotating MOST stars Ïμ Eri and κ1 Cet, and the rapid rotators R58 and LQ Lup can be easily reproduced. We also find that differences in the depth of the convection zone cause large differences in the surface rotation law and that the extreme surface shear of HD 171488 can only be explained with an artificially shallow convection layer. We verify the thermal wind equilibrium in rapidly rotating G dwarfs and find that the polar subrotation (dΩ/dz < 0) is due to the baroclinic effect and the equatorial superrotation (dΩ/dr > 0) is caused by the Reynolds stresses. In the bulk of the convection zones where the meridional flow is slow and smooth, the thermal wind equilibrium holds between the centrifugal and the pressure forces. It does not hold, however, in the bounding shear layers including the equatorial region where the Reynolds stresses dominate. © 2011 ESO. Source

Discover hidden collaborations