Institute Of Recherches Microbiologiques Jean Marie Wiame

Brussels, Belgium

Institute Of Recherches Microbiologiques Jean Marie Wiame

Brussels, Belgium

Time filter

Source Type

Van Laer B.,Vrije Universiteit Brussel | Van Laer B.,Structural Biology Research Center | Van Laer B.,European Synchrotron Radiation Facility | Roovers M.,Institute Of Recherches Microbiologiques Jean Marie Wiame | And 16 more authors.
Nucleic Acids Research | Year: 2016

Purine nucleosides on position 9 of eukaryal and archaeal tRNAs are frequently modified in vivo by the post-transcriptional addition of a methyl group on their N1 atom. The methyltransferase Trm10 is responsible for this modification in both these domains of life. While certain Trm10 orthologues specifically methylate either guanosine or adenosine at position 9 of tRNA, others have a dual specificity. Until now structural information about this enzyme family was only available for the catalytic SPOUT domain of Trm10 proteins that show specificity toward guanosine. Here, we present the first crystal structure of a full length Trm10 orthologue specific for adenosine, revealing next to the catalytic SPOUT domain also N- and C-terminal domains. This structure hence provides crucial insights in the tRNA binding mechanism of this unique monomeric family of SPOUT methyltransferases. Moreover, structural comparison of this adenosine-specific Trm10 orthologue with guanosine-specific Trm10 orthologues suggests that the N1 methylation of adenosine relies on additional catalytic residues. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


Kempenaers M.,Free University of Colombia | Roovers M.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Oudjama Y.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Tkaczuk K.L.,International Institute of Molecular and Cell Biology in Warsaw | And 5 more authors.
Nucleic Acids Research | Year: 2010

Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed. © The Author(s) 2010. Published by Oxford University Press.


Lopez-Berges M.S.,University of Cordoba, Spain | Capilla J.,Rovira i Virgili University | Turra D.,University of Cordoba, Spain | Schafferer L.,Innsbruck Medical University | And 7 more authors.
Plant Cell | Year: 2012

Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of DhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-def cient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. © 2012 American Society of Plant Biologists. All rights reserved.


Roovers M.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Oudjama Y.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Fislage M.,Vrije Universiteit Brussel | Bujnicki J.M.,International Institute of Molecular and Cell Biology in Warsaw | And 3 more authors.
RNA | Year: 2012

N 2-methylguanosine (m 2G) is found at position 6 in the acceptor stem of Thermus thermophilus tRNA Phe. In this article, we describe the cloning, expression, and characterization of the T. thermophilus HB27 methyltransferase (MTase) encoded by the TTC1157 open reading frame that catalyzes the formation of this modified nucleoside. S-adenosyl-L-methionine is used as donor of the methyl group. The enzyme behaves as a monomer in solution. It contains an N-terminal THUMP domain predicted to bind RNA and contains a C-terminal Rossmann-fold methyltransferase (RFM) domain predicted to be responsible for catalysis. We propose to rename the TTC1157 gene trmN and the corresponding protein TrmN, according to the bacterial nomenclature of tRNA methyltransferases. Inactivation of the trmN gene in the T. thermophilus HB27 chromosome led to a total absence of m 2G in tRNA but did not affect cell growth or the formation of other modified nucleosides in tRNA Phe. Archaeal homologs of TrmN were identified and characterized. These proteins catalyze the same reaction as TrmN from T. thermophilus. Individual THUMP and RFM domains of PF1002 from Pyrococcus furiosus were produced. These separate domains were inactive and did not bind tRNA, reinforcing the idea that the THUMP domain acts in concert with the catalytic domain to target a particular position of the tRNA molecule. Published by Cold Spring Harbor Laboratory Press. Copyright © 2012 RNA Society.


Fislage M.,Vrije Universiteit Brussel | Roovers M.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Tuszynska I.,International Institute of Molecular and Cell Biology in Warsaw | Bujnicki J.M.,International Institute of Molecular and Cell Biology in Warsaw | And 3 more authors.
Nucleic Acids Research | Year: 2012

Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNA Phe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m 2G6 (N 2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl-l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNA Phe of T. thermophilus and via site-directed mutagenesis. © 2012 The Author(s).


Somme J.,Free University of Colombia | Van Laer B.,Vrije Universiteit Brussel | Van Laer B.,Structural Biology Research Center | Roovers M.,Institute Of Recherches Microbiologiques Jean Marie Wiame | And 5 more authors.
RNA | Year: 2014

The 2′-O-methylation of the nucleoside at position 32 of tRNA is found in organisms belonging to the three domains of life. Unrelated enzymes catalyzing this modification in Bacteria (TrmJ) and Eukarya (Trm7) have already been identified, but until now, no information is available for the archaeal enzyme. In this work we have identified the methyltransferase of the archaeon Sulfolobus acidocaldarius responsible for the 2′-O-methylation at position 32. This enzyme is a homolog of the bacterial TrmJ. Remarkably, both enzymes have different specificities for the nature of the nucleoside at position 32. While the four canonical nucleosides are substrates of the Escherichia coli enzyme, the archaeal TrmJ can only methylate the ribose of a cytidine. Moreover, the two enzymes recognize their tRNA substrates in a different way. We have solved the crystal structure of the catalytic domain of both enzymes to gain better understanding of these differences at a molecular level. © 2014 Somme et al.


Lopez-Berges M.S.,University of Cordoba, Spain | Lopez-Berges M.S.,CSIC - Biological Research Center | Turra D.,University of Cordoba, Spain | Capilla J.,Unitat de Microbiologia | And 7 more authors.
Plant Signaling and Behavior | Year: 2013

Soilborne fungal pathogens are highly persistent and provoke important crop losses. During saprophytic and infectious stages in the soil, these organisms face situations of nutrient limitation and lack of essential elements, such as iron. We investigated the role of the bZIP transcription factor HapX as a central regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. This root-infecting plant pathogen attacks more than hundred different crops and is an emerging human opportunistic invader. Although iron uptake remains unaffected in a strain lacking HapX, de-repression of genes implicated in iron-consuming processes such as respiration, amino acid metabolism, TCA cycle and heme biosynthesis lead to severely impaired growth under iron-limiting conditions. HapX is required for full virulence of F. oxysporum in tomato plants and essential for infection in immunodepressed mice. Virulence attenuation of the ΔhapX strain on tomato plants is more pronounced by co-inoculation of roots with the biocontrol strain Pseudomonas putida KT2440, but not with a mutant deficient in siderophores production. These results demonstrate that HapX is required for iron competition of F. oxysporum in the tomato rhizosphere and establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. © 2013 Landes Bioscience.


Sanchez D.,University of the Balearic Islands | Matthijs S.,Institute Of Recherches Microbiologiques Jean Marie Wiame | Gomila M.,University of the Balearic Islands | Tricot C.,Institute Of Recherches Microbiologiques Jean Marie Wiame | And 5 more authors.
Applied and Environmental Microbiology | Year: 2014

A water sample from a noncontaminated site at the source of the Woluwe River (Belgium) was analyzed by culture-dependent and -independent methods. Pseudomonas isolates were identified by sequencing and analysis of the rpoD gene. Cultureindependent methods consisted of cloning and pyrosequencing of a Pseudomonas rpoD amplicon from total DNA extracted from the same sample and amplified with selective rpoD gene primers. Among a total of 14,540 reads, 6,228 corresponded to Pseudomonas rpoD gene sequences by a BLAST analysis in the NCBI database. The selection criteria for the reads were sequences longer than 400 bp, an average Q40 value greater than 25, and >85% identity with a Pseudomonas species. Of the 6,228 Pseudomonas rpoD sequences, 5,345 sequences met the established criteria for selection. Sequences were clustered by phylogenetic analysis and by use of the QIIME software package. Representative sequences of each cluster were assigned by BLAST analysis to a known Pseudomonas species when the identity with the type strain was greater than or equal to 96%. Twenty-six species distributed among 12 phylogenetic groups or subgroups within the genus were detected by pyrosequencing. Pseudomonas stutzeri, P. moraviensis, and P. simiae were the only cultured species not detected by pyrosequencing. The predominant phylogenetic group within the Pseudomonas genus was the P. fluorescens group, as determined by culture-dependent and -independent analyses. In all analyses, a high number of putative novel phylospecies was found: 10 were identified in the cultured strains and 246 were detected by pyrosequencing, indicating that the diversity of Pseudomonas species has not been fully described. © 2014, American Society for Microbiology.


Li W.,Catholic University of Leuven | Estrada-De Los Santos P.,Catholic University of Leuven | Estrada-De Los Santos P.,National Autonomous University of Mexico | Matthijs S.,Vrije Universiteit Brussel | And 6 more authors.
Chemistry and Biology | Year: 2011

Under control of the Gac regulatory system, Pseudomonas putida RW10S1 produces promysalin to promote its own swarming and biofilm formation, and to selectively inhibit many other pseudomonads, including the opportunistic pathogen Pseudomonas aeruginosa. This amphipathic antibiotic is composed of salicylic acid and 2,8-dihydroxymyristamide bridged by a unique 2-pyrroline-5-carboxyl moiety. In addition to enzymes for salicylic acid synthesis and activation, the biosynthetic gene cluster encodes divergent type II fatty acid biosynthesis components, unusual fatty acid-tailoring enzymes (two Rieske-type oxygenases and an amidotransferase), an enzyme resembling a proline-loading module of nonribosomal peptide synthetases, and the first prokaryotic member of the BAHD family of plant acyltransferases. Identification of biosynthetic intermediates enabled to propose a pathway for synthesis of this bacterial colonization factor. © 2011 Elsevier Ltd All rights reserved.


PubMed | Institute Of Recherches Microbiologiques Jean Marie Wiame, Free University of Colombia and Vrije Universiteit Brussel
Type: Journal Article | Journal: RNA (New York, N.Y.) | Year: 2014

The 2-O-methylation of the nucleoside at position 32 of tRNA is found in organisms belonging to the three domains of life. Unrelated enzymes catalyzing this modification in Bacteria (TrmJ) and Eukarya (Trm7) have already been identified, but until now, no information is available for the archaeal enzyme. In this work we have identified the methyltransferase of the archaeon Sulfolobus acidocaldarius responsible for the 2-O-methylation at position 32. This enzyme is a homolog of the bacterial TrmJ. Remarkably, both enzymes have different specificities for the nature of the nucleoside at position 32. While the four canonical nucleosides are substrates of the Escherichia coli enzyme, the archaeal TrmJ can only methylate the ribose of a cytidine. Moreover, the two enzymes recognize their tRNA substrates in a different way. We have solved the crystal structure of the catalytic domain of both enzymes to gain better understanding of these differences at a molecular level.

Loading Institute Of Recherches Microbiologiques Jean Marie Wiame collaborators
Loading Institute Of Recherches Microbiologiques Jean Marie Wiame collaborators