Entity

Time filter

Source Type


Diabate A.,Institute Of Recherche En Science Of La Sante Center Muraz | Tripet F.,Keele University
Parasites and Vectors | Year: 2015

Malaria vector control relies heavily on the use of Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS). These, together with the combined drug administration efforts to control malaria, have reduced the death toll to less than 700,000 deaths/year. This progress has engendered real excitement but the emergence and spread of insecticide resistance is challenging our ability to sustain and consolidate the substantial gains that have been made. Research is required to discover novel vector control tools that can supplement and improve the effectiveness of those currently available. Here, we argue that recent and continuing progress in our understanding of male mating biology is instrumental in the implementation of new approaches based on the release of either conventional sterile or genetically engineered males. Importantly, further knowledge of male biology could also lead to the development of new interventions, such as sound traps and male mass killing in swarms, and contribute to new population sampling tools. We review and discuss recent advances in the behavioural ecology of male mating with an emphasis on the potential applications that can be derived from such knowledge. We also highlight those aspects of male mating ecology that urgently require additional study in the future. © 2015 Diabate and Tripet. Source


N'fale S.,CentreNational de Recherche et de la Formation sur Paludisme | Dabire R.K.,Institute Of Recherche En Science Of La Sante Center Muraz
Emerging Infectious Diseases | Year: 2014

Malaria control is dependent on insecticides. Increases in prevalence of insecticide resistance in malaria vectors across Africa are well-documented. However, few attempts have been made to quantify the strength of this resistance and link it to the effectiveness of control tools. Using quantitative bioassays, we show that in Burkina Faso pyrethroid resistance in Anopheles gambiae mosquitoes has increased in intensity in recent years and now exceeds 1,000- fold. In laboratory assays, this level of resistance renders insecticides used to impregnate bed nets ineffective. Thus, the level of personal and community protection afforded by long-lasting insecticide-treated net campaigns will probably be reduced. Standardized methods are needed to quantify resistance levels in malaria vectors and link these levels to failure of vector control methods. © 2014, Emerging Infectious Diseases. All Rights Reserved. Source


Diabate A.,National Institute of Allergy and Infectious Diseases | Diabate A.,Institute Of Recherche En Science Of La Sante Center Muraz | Yaro A.S.,University of Bamako | Dao A.,University of Bamako | And 3 more authors.
BMC Evolutionary Biology | Year: 2011

Background: Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results: We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions: Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition. © 2011 Diabaté et al; licensee BioMed Central Ltd. Source


Toe K.H.,Center National Of Recherche Et Of La Formation Sur Le Paludisme | N'Fale S.,Center National Of Recherche Et Of La Formation Sur Le Paludisme | Dabire R.K.,Institute Of Recherche En Science Of La Sante Center Muraz
BMC Genomics | Year: 2015

Background: Since 2011, the level of pyrethroid resistance in the major malaria mosquito, Anopheles coluzzi, has increased to such an extent in Burkina Faso that none of the long lasting insecticide treated nets (LLINs) currently in use throughout the country kill the local mosquito vectors. We investigated whether this observed increase was associated with transcriptional changes in field-caught Anopheles coluzzi using two independent whole-genome microarray studies, performed in 2011 and 2012. Results: Mosquitoes were collected from south-west Burkina Faso in 2011 and 2012 and insecticide exposed or non-exposed insects were compared to laboratory susceptible colonies using whole-genome microarrays. Using a stringent filtering process we identified 136 genes, including the well-studied detoxification enzymes (p450 monoxygenases and esterases) and non-detoxification genes (e.g. cell transporters and cuticular components), associated with pyrethroid resistance, whose basal expression level increased during the timeframe of the study. A subset of these were validated by qPCR using samples from two study sites, collected over 3years and marked increases in expression were observed each year. We hypothesise that these genes are contributing to this rapidly increasing resistance phenotype in An. coluzzi. A comprehensive analysis of the knockdown resistance (kdr) mutations (L1014S, L1014F and N1575Y) revealed that the majority of the resistance phenotype is not explained by target-site modifications. Conclusions: Our data indicate that the recent and rapid increase in pyrethroid resistance observed in south-west Burkina Faso is associated with gene expression profiles described here. Over a third of these candidates are also overexpressed in multiple pyrethroid resistant populations of An. coluzzi from neighbouring Côte d'Ivoire. This suite of molecular markers can be used to track the spread of the extreme pyrethroid resistance phenotype that is sweeping through West Africa and to determine the functional basis of this trait. © 2015 Toé et al. Source


Baldini F.,University of Perugia | Baldini F.,Harvard University | Baldini F.,University of Glasgow | Segata N.,University of Trento | And 8 more authors.
Nature Communications | Year: 2014

Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia-Anopheles associations to limit malaria transmission. Source

Discover hidden collaborations