Time filter

Source Type

Terme M.,Institute Of Recherche En Sante Of Luniversite Of Nantes | Terme M.,French Institute of Health and Medical Research | Terme M.,French National Center for Scientific Research | Dorvillius M.,Institute Of Recherche En Sante Of Luniversite Of Nantes | And 17 more authors.
PLoS ONE | Year: 2014

Background: Anti-GD2 antibody is a proven therapy for GD2-postive neuroblastoma. Monoclonal antibodies against GD2, such as chimeric mAb ch14.18, have become benchmarks for neuroblastoma therapies. Pain, however, can limit immunotherapy with anti-GD2 therapeutic antibodies like ch14.18. This adverse effect is attributed to acute inflammation via complement activation on GD2-expressing nerves. Thus, new strategies are needed for the development of treatment intensification strategies to improve the outcome of these patients. Methodology/Principal Findings: We established the mouse-human chimeric antibody c.8B6 specific to OAcGD2 in order to reduce potential immunogenicity in patients and to fill the need for a selective agent that can kill neuroblastoma cells without inducing adverse neurological side effects caused by anti-GD2 antibody immunotherapy. We further analyzed some of its functional properties compared with anti-GD2 ch14.18 therapeutic antibody. With the exception of allodynic activity, we found that antibody c.8B6 shares the same anti-neuroblastoma attributes as therapeutic ch14.18 anti-GD2 mAb when tested in cell-based assay and in vivo in an animal model. Conclusion/Significance: The absence of OAcGD2 expression on nerve fibers and the lack of allodynic properties of c.8B6-which are believed to play a major role in mediating anti-GD2 mAb dose-limiting side effects-provide an important rationale for the clinical application of c.8B6 in patients with high-risk neuroblastoma. © 2014 Terme et al. Source

Bah N.,University of Nantes | Maillet L.,University of Nantes | Ryan J.,Dana-Farber Cancer Institute | Dubreil S.,University of Nantes | And 7 more authors.
Cell Death and Disease | Year: 2014

Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase-and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of BclxL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy. © 2014 Macmillan Publishers Limited All rights reserved. Source

Rauscher A.,University of Nantes | Frindel M.,University of Nantes | Maurel C.,University of Nantes | Maillasson M.,University of Nantes | And 7 more authors.
Nuclear Medicine and Biology | Year: 2014

Introduction: This paper proposes liposomes as a potential new tool for radioimmunotherapy in solid tumours with a two step targeting system. Tumour pretargeting is obtained by using a monoclonal bispecific antibody (BsmAb, anti CEA x anti-DTPA-In) and pegylated liposomes containing lipid-hapten (DSPE-DTPA-In or DSPE-PEG-DTPA-In). To optimise at the same time in vivo behaviour and specific targeting, the study focuses on the liposome formulation in order to determine more precisely the role of pegylation on both the blood half-life and the specific recognition with the BsmAb. Methods: Different liposome formulations containing two PEG length (1000 and 2000) in varying amount (1.5-6mol%) were prepared with DTPA directly coupled to DSPE or at the end of the PEG chain (DSPE-DTPA or DSPE-PEG-DTPA). Liposomes were immobilized on an L1 chip to measure by SPR (Surface Plasmon Resonance) the effect of pegylation on the BsmAb recognition of the DTPA-In hapten. Pharmacokinetic studies were performed in mice. Tumour targeting was studied in nude mice xenografted with human colorectal adenocarcinoma cells that express CEA, and doubly radiolabelled liposomes (with 111In and 125I) injected 24h after the BsmAb. Results: The best in vitro apparent dissociation constant was obtained with liposomes bearing DTPA at the end of the PEG chain (KD= 6.3 nM), which showed significant specific tumour uptake after BsmAb injection (8.6 ± 2.4% ID/g at 24. h versus 4.5 ± 0.5%ID/g for passive targeting, α = 0.01). All tumour/organ ratios were superior to 1 at 24. h for this formulation, except for the spleen. Conclusion: The feasibility of specific tumour targeting in mice with a BsmAb and radiolabelled liposomes was demonstrated and the interest of SPR to predict their targeting performance in vivo was highlighted. This original and new approach provides promising prospects for the radioimmunotherapy of solid tumours. © 2014 Elsevier Inc. Source

Cochonneau D.,French Institute of Health and Medical Research | Cochonneau D.,French National Center for Scientific Research | Terme M.,Institute Of Recherche En Sante Of Luniversite Of Nantes | Michaud A.,French Institute of Health and Medical Research | And 14 more authors.
Cancer Letters | Year: 2013

O-Acetyl-GD2 ganglioside is suitable antigen for tumor immunotherapy with specific therapeutic antibody. Here, we investigate the anti-tumor activity of O-acetyl-GD2-specific monoclonal antibody 8B6 on O-acetyl-GD2-positive tumor cells. The results indicated that mAb 8B6 induced growth inhibition of O-acetyl-GD2-expressing tumor cell lines in vitro with features of cell cycle arrest and apoptosis. Monoclonal antibody 8B6 treatment was also very effective in suppression of tumor growth in mice by reducing the proliferation index and increasing the apoptotic index. Such a study represents a useful framework to optimize immunotherapy with O-acetyl-GD2-specific antibody in combination with chemotherapeutic agents. © 2013 Elsevier Ireland Ltd. Source

Discover hidden collaborations