Entity

Time filter

Source Type


Hulseweh B.,Wehrwissenschaftliches Institute For Schutztechnologien Wis | Rulker T.,TU Braunschweig | Pelat T.,Institute Of Recherche Biomedicale Des Armees Irba Crssa | Langermann C.,Wehrwissenschaftliches Institute For Schutztechnologien Wis | And 5 more authors.
mAbs | Year: 2014

This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69-3A2) neutralized 50% of 5 x 104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69-3A2 antibody is a promising candidate for future passive vaccine development. © 2014 Landes Bioscience. Source


Droste P.,TU Braunschweig | Droste P.,Celerion Switzerland AG | Frenzel A.,TU Braunschweig | Frenzel A.,YUMAB GmbH | And 7 more authors.
BMC Biotechnology | Year: 2015

Background: Beside neurofibrillary tangles, amyloid plaques are the major histological hallmarks of Alzheimer's disease (AD) being composed of aggregated fibrils of β-amyloid (Aβ). During the underlying fibrillogenic pathway, starting from a surplus of soluble Aβ and leading to mature fibrils, multiple conformations of this peptide appear, including oligomers of various shapes and sizes. To further investigate the fibrillization of β-amyloid and to have tools at hand to monitor the distribution of aggregates in the brain or even act as disease modulators, it is essential to develop highly sensitive antibodies that can discriminate between diverse aggregates of Aβ. Results: Here we report the generation and characterization of a variety of amyloid-β specific human and human-like antibodies. Distinct fractions of monomers and oligomers of various sizes were separated by size exclusion chromatography (SEC) from Aβ42 peptides. These antigens were used for the generation of two Aβ42 specific immune scFv phage display libraries from macaque (Macaca fascicularis). Screening of these libraries as well as two naïve human phage display libraries resulted in multiple unique binders specific for amyloid-β. Three of the obtained antibodies target the N-terminal part of Aβ42 although with varying epitopes, while another scFv binds to the aα-helical central region of the peptide. The affinities of the antibodies to various Aβ42 aggregates as well as their ability to interfere with fibril formation and disaggregation of preformed fibrils were determined. Most significantly, one of the scFv is fibril-specific and can discriminate between two different fibril forms resulting from variations in the acidity of the milieu during fibrillogenesis. Conclusion: We demonstrated that the approach of animal immunization and subsequent phage display based antibody selection is applicable to generate highly specific anti β-amyloid scFvs that are capable of accurately discriminating between minute conformational differences. © 2015 Droste et al. Source


Respaud R.,CNRS Genetics, Immunotherapy, Chemistry & Cancer Laboratory | Respaud R.,University of Tours | March D.,Center dEtude des Pathologies Respiratoires | March D.,University of Tours | And 15 more authors.
mAbs | Year: 2014

Most monoclonal antibodies (mAbs) are administered to patients intravenously to ensure high bioavailability as rapidly as possible. The airways, however, are an attractive delivery route for mAbs for the treatment of lung diseases, making it possible to increase their concentration in the target organ while limiting their systemic passage. Several challenges must be overcome for translation into clinical practice. For example, the drug and device must be paired for the efficient and reliable deposition of a pharmacologically active and safe mAb in the lung region of interest. Mesh nebulizers appear to be the most effective aerosol-producing devices for delivering large amounts of biopharmaceutical while limiting protein instability during nebulization. We used metrological and analytic methods to analyze the effect of both antibody concentration and surfactant addition on aerosol performance and antibody integrity. These two factors had a limited effect on aerosol performance, but affected antibody aggregation. The addition of surfactants to antibody formulations at concentrations appropriate for lung administration markedly reduced the formation of medium or large aggregates, as shown by dynamic light scattering and fluorescence microscopy. Aggregation was also dependent on the type of mesh nebulizer, highlighting the need to optimize drug and device together. © 2014 Taylor & Francis Group, LLC. Source


Miethe S.,TU Braunschweig | Rasetti-Escargueil C.,UK National Institute for Biological Standards and Control | Avril A.,Institute Of Recherche Biomedicale Des Armees Irba Crssa | Avril A.,Institute Of Recherche Biomedicale Des Armees | And 9 more authors.
PLoS ONE | Year: 2015

Background: Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results: In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion: These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development. © 2015 Miethe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source


Froude II J.W.,Institute Of Recherche Biomedicale Des Armees Irba Crssa | Froude II J.W.,U.S. Army | Thullier P.,Institute Of Recherche Biomedicale Des Armees Irba Crssa | Pelat T.,Institute Of Recherche Biomedicale Des Armees Irba Crssa
Toxins | Year: 2011

B. anthracis is a bioweapon of primary importance and its pathogenicity depends on its lethal and edema toxins, which belong to the A-B model of bacterial toxins, and on its capsule. These toxins are secreted early in the course of the anthrax disease and for this reason antibiotics must be administered early, in addition to other limitations. Antibodies (Abs) may however neutralize those toxins and target this capsule to improve anthrax treatment, and many Abs have been developed in that perspective. These Abs act at various steps of the cell intoxication and their mechanisms of action are detailed in the present review, presented in correlation with structural and functional data. The potential for clinical application is discussed for Abs targeting each step of entry, with four of these molecules already advancing to clinical trials. Paradoxically, certain Abs may also enhance the lethal toxin activity and this aspect will also be presented. The unique paradigm of Abs neutralizing anthrax toxins thus exemplifies how they may act to neutralize A-B toxins and, more generally, be active against infectious diseases. © 2011 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations