Institute Of Recerca Contra La Leucemia Josep Carreras Ijc

Badalona, Spain

Institute Of Recerca Contra La Leucemia Josep Carreras Ijc

Badalona, Spain

Time filter

Source Type

Cree I.A.,Coventry University | Cree I.A.,University College London | Deans Z.,Royal Infirmary | Ligtenberg M.J.L.,Radboud University Nijmegen | And 12 more authors.
Journal of Clinical Pathology | Year: 2014

Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here.


PubMed | Institute Of Recerca Contra La Leucemia Josep Carreras Ijc, Biomarker Solutions Ltd, University of Groningen, Service de Genetique and 8 more.
Type: Journal Article | Journal: Journal of clinical pathology | Year: 2014

Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here.


Arenillas L.,Hospital del Mar | Mallo M.,Institute Of Recerca Contra La Leucemia Josep Carreras Ijc | Ramos F.,University of León | Guinta K.,Cleveland Clinic | And 18 more authors.
Genes Chromosomes and Cancer | Year: 2013

Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. © 2013 Wiley Periodicals, Inc.


Sanchez-Castro J.,Hospital Arnau Of Vilanova | Marco-Betes V.,Hospital Arnau Of Vilanova | Gomez-Arbones X.,Hospital Arnau Of Vilanova | Gomez-Arbones X.,University of Lleida | And 20 more authors.
Leukemia and Lymphoma | Year: 2015

Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected-17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p) © 2015 Informa UK, Ltd.


Mallo M.,Hospital del Mar | Mallo M.,Institute Of Recerca Contra La Leucemia Josep Carreras Ijc | Mallo M.,Autonomous University of Barcelona | del Rey M.,University of Salamanca | And 19 more authors.
British Journal of Haematology | Year: 2013

Lenalidomide is an effective drug in low-risk myelodysplastic syndromes (MDS) with isolated del(5q), although not all patients respond. Studies have suggested a role for TP53 mutations and karyotype complexity in disease progression and outcome. In order to assess the impact of complex karyotypes on treatment response and disease progression in 52 lenalidomide-treated patients with del(5q) MDS, conventional G-banding cytogenetics (CC), single nucleotide polymorphism array (SNP-A), and genomic sequencing methods were used. SNP-A analysis (with control sample, lymphocytes CD3+, in 30 cases) revealed 5q losses in all cases. Other recurrent abnormalities were infrequent and were not associated with lenalidomide responsiveness. Low karyotype complexity (by CC) and a high baseline platelet count (>280 × 109/l) were associated with the achievement of haematological response (P = 0.020, P = 0.013 respectively). Unmutated TP53 status showed a tendency for haematological response (P = 0.061). Complete cytogenetic response was not observed in any of the mutated TP53 cases. By multivariate analysis, the most important predictor for lenalidomide treatment failure was a platelet count <280 × 109/l (Odds Ratio = 6.17, P = 0.040). This study reveals the importance of a low baseline platelet count, karyotypic complexity and TP53 mutational status for response to lenalidomide treatment. It supports the molecular study of TP53 in MDS patients treated with lenalidomide. © 2013 John Wiley & Sons Ltd.

Loading Institute Of Recerca Contra La Leucemia Josep Carreras Ijc collaborators
Loading Institute Of Recerca Contra La Leucemia Josep Carreras Ijc collaborators