Institute of Plant Protection

Minsk Region, Belarus

Institute of Plant Protection

Minsk Region, Belarus
SEARCH FILTERS
Time filter
Source Type

News Article | May 8, 2017
Site: www.eurekalert.org

Researchers have discovered an unexpected strategy that can delay, and even reverse, evolution of resistance by pests to genetically engineered crops Insect pests that are rapidly adapting to genetically engineered crops threaten agriculture worldwide. A new study published in the Proceedings of the National Academy of Sciences reveals the success of a surprising strategy for countering this problem: Hybridizing genetically engineered cotton with conventional cotton reduced resistance in the pink bollworm, a voracious global pest. The study is the result of a long-standing collaboration between researchers at the University of Arizona and in China. Over 11 years, they tested more than 66,000 pink bollworm caterpillars from China's Yangtze River Valley, a vast region of southeastern China that is home to millions of smallholder farmers. According to the study's authors, this is the first reversal of substantial pest resistance to a Bt crop. "We have seen blips of resistance going up and down in a small area," said senior author Bruce Tabashnik, a Regents' Professor in the UA's College of Agriculture and Life Sciences. "But this isn't a blip. Resistance had increased significantly across an entire region, then it decreased below detection level after this novel strategy was implemented." Cotton, corn and soybean have been genetically engineered to produce pest-killing proteins from the widespread soil bacterium Bacillus thuringiensis, or Bt. These Bt proteins are considered environmentally friendly because they are not toxic to people and wildlife. They have been used in sprays by organic growers for more than 50 years, and in engineered Bt crops planted by millions of farmers worldwide on more than 1 billion acres since 1996. Unfortunately, without adequate countermeasures, pests can quickly evolve resistance. The primary strategy for delaying resistance is providing refuges of the pests' host plants that do not make Bt proteins. This allows survival of insects that are susceptible to Bt proteins and reduces the chances that two resistant insects will mate and produce resistant offspring. Before 2010, the U.S. Environmental Protection Agency required refuges in separate fields or large blocks within fields. Planting such non-Bt cotton refuges is credited with preventing evolution of resistance to Bt cotton by pink bollworm in Arizona for more than a decade. By contrast, despite a similar requirement for planting refuges in India, farmers there did not comply and pink bollworm rapidly evolved resistance. The ingenious strategy used in China entails interbreeding Bt cotton with non-Bt cotton, then crossing the resulting first-generation hybrid offspring and planting the second-generation hybrid seeds. This generates a random mixture within fields of 75 percent Bt cotton plants side-by-side with 25 percent non-Bt cotton plants. "Because cotton can self-pollinate, the first-generation hybrids must be created by tedious and costly hand pollination of each flower," said Tabashnik, who also is a member of the UA's BIO5 Institute. "However, hybrids of the second generation and all subsequent generations can be obtained readily via self-pollination. So, the hybrid mix and its benefits can be maintained in perpetuity." Tabashnik calls this strategy revolutionary because it was not designed to fight resistance and arose without mandates by government agencies. Rather, it emerged from the farming community of the Yangtze River Valley. While most previous attention has focused on the drawbacks of interbreeding between genetically engineered and conventional plants, the authors point out that the new results demonstrate gains from such hybridization. "For the growers in China, this practice provides short-term benefits," Tabashnik added. "It's not a short-term sacrifice imposed on them for potential long-term gains. The hybrid plants tend to have higher yield than the parent plants, and the second-generation hybrids cost less, so it's a market-driven choice for immediate advantages, and it promotes sustainability. Our results show 96 percent pest suppression and 69 percent fewer insecticide sprays." Although seed mixtures of corn have been planted in the U.S. since 2010, the effects of seed mixtures on pest adaptation were not tested before on a large scale, he explained. "Our study provides the first evidence that planting mixtures of Bt and non-Bt seeds within fields has a resistance-delaying or, in this case, resistance-reversing effect," Tabashnik said. Unlike the strategy in China, the corn seed mixtures planted in the U.S. do not involve interbreeding. Also, the corn seed mixtures have as little as 5 percent non-Bt corn, which may not be enough to battle resistance effectively. "This study gives a new option for managing resistance that is very convenient for small-scale farmers and could be broadly helpful in developing countries like China and India," explained coauthor Kongming Wu, who led the work conducted in China and is a professor in the Institute of Plant Protection in Beijing. "A great thing about this hybrid seed mix strategy is that we don't have to worry about growers' compliance or regulatory issues," Tabashnik said. "We know it works for millions of farmers in the Yangtze River Valley. Whether it works elsewhere remains to be determined." Registered journalists can access an embargoed copy of the research article through https:/ , or by contacting the PNAS News Office by phone: 202-334-1310, email: PNASnews@nas.edu, or fax: 202-334-2739.


The study is the result of a long-standing collaboration between researchers at the University of Arizona and in China. Over 11 years, they tested more than 66,000 pink bollworm caterpillars from China's Yangtze River Valley, a vast region of southeastern China that is home to millions of smallholder farmers. According to the study's authors, this is the first reversal of substantial pest resistance to a Bt crop. "We have seen blips of resistance going up and down in a small area," said senior author Bruce Tabashnik, a Regents' Professor in the UA's College of Agriculture and Life Sciences. "But this isn't a blip. Resistance had increased significantly across an entire region, then it decreased below detection level after this novel strategy was implemented." Cotton, corn and soybean have been genetically engineered to produce pest-killing proteins from the widespread soil bacterium Bacillus thuringiensis, or Bt. These Bt proteins are considered environmentally friendly because they are not toxic to people and wildlife. They have been used in sprays by organic growers for more than 50 years, and in engineered Bt crops planted by millions of farmers worldwide on more than 1 billion acres since 1996. Unfortunately, without adequate countermeasures, pests can quickly evolve resistance. The primary strategy for delaying resistance is providing refuges of the pests' host plants that do not make Bt proteins. This allows survival of insects that are susceptible to Bt proteins and reduces the chances that two resistant insects will mate and produce resistant offspring. Before 2010, the U.S. Environmental Protection Agency required refuges in separate fields or large blocks within fields. Planting such non-Bt cotton refuges is credited with preventing evolution of resistance to Bt cotton by pink bollworm in Arizona for more than a decade. By contrast, despite a similar requirement for planting refuges in India, farmers there did not comply and pink bollworm rapidly evolved resistance. The ingenious strategy used in China entails interbreeding Bt cotton with non-Bt cotton, then crossing the resulting first-generation hybrid offspring and planting the second-generation hybrid seeds. This generates a random mixture within fields of 75 percent Bt cotton plants side-by-side with 25 percent non-Bt cotton plants. "Because cotton can self-pollinate, the first-generation hybrids must be created by tedious and costly hand pollination of each flower," said Tabashnik, who also is a member of the UA's BIO5 Institute. "However, hybrids of the second generation and all subsequent generations can be obtained readily via self-pollination. So, the hybrid mix and its benefits can be maintained in perpetuity." Tabashnik calls this strategy revolutionary because it was not designed to fight resistance and arose without mandates by government agencies. Rather, it emerged from the farming community of the Yangtze River Valley. While most previous attention has focused on the drawbacks of interbreeding between genetically engineered and conventional plants, the authors point out that the new results demonstrate gains from such hybridization. "For the growers in China, this practice provides short-term benefits," Tabashnik added. "It's not a short-term sacrifice imposed on them for potential long-term gains. The hybrid plants tend to have higher yield than the parent plants, and the second-generation hybrids cost less, so it's a market-driven choice for immediate advantages, and it promotes sustainability. Our results show 96 percent pest suppression and 69 percent fewer insecticide sprays." Although seed mixtures of corn have been planted in the U.S. since 2010, the effects of seed mixtures on pest adaptation were not tested before on a large scale, he explained. "Our study provides the first evidence that planting mixtures of Bt and non-Bt seeds within fields has a resistance-delaying or, in this case, resistance-reversing effect," Tabashnik said. Unlike the strategy in China, the corn seed mixtures planted in the U.S. do not involve interbreeding. Also, the corn seed mixtures have as little as 5 percent non-Bt corn, which may not be enough to battle resistance effectively. "This study gives a new option for managing resistance that is very convenient for small-scale farmers and could be broadly helpful in developing countries like China and India," explained coauthor Kongming Wu, who led the work conducted in China and is a professor in the Institute of Plant Protection in Beijing. "A great thing about this hybrid seed mix strategy is that we don't have to worry about growers' compliance or regulatory issues," Tabashnik said. "We know it works for millions of farmers in the Yangtze River Valley. Whether it works elsewhere remains to be determined." More information: Peng Wan el al., "Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1700396114


News Article | May 9, 2017
Site: www.futurity.org

Mixing genetically engineered cotton with conventional cotton to create hybrid plants reduces—or even reverses—resistance in the pink bollworm, a new study shows. The research is of particular importance at a time when insect pests that are rapidly adapting to genetically engineered crops threaten agriculture worldwide. For the study, published in the Proceedings of the National Academy of Sciences, researchers tested more than 66,000 pink bollworm caterpillars from China’s Yangtze River Valley, a vast region of southeastern China that is home to millions of smallholder farmers, over 11 years. According to the study’s authors, this is the first reversal of substantial pest resistance to a Bt crop. “We have seen blips of resistance going up and down in a small area,” says senior author Bruce Tabashnik, a professor in the University of Arizona’s College of Agriculture and Life Sciences. “But this isn’t a blip. Resistance had increased significantly across an entire region, then it decreased below detection level after this novel strategy was implemented.” Cotton, corn, and soybean have been genetically engineered to produce pest-killing proteins from the widespread soil bacterium Bacillus thuringiensis, or Bt. These Bt proteins are considered environmentally friendly because they are not toxic to people and wildlife. They have been used in sprays by organic growers for more than 50 years, and in engineered Bt crops planted by millions of farmers worldwide on more than 1 billion acres since 1996. Unfortunately, without adequate countermeasures, pests can quickly evolve resistance. The primary strategy for delaying resistance is providing refuges of the pests’ host plants that do not make Bt proteins. This allows survival of insects that are susceptible to Bt proteins and reduces the chances that two resistant insects will mate and produce resistant offspring. Before 2010, the US Environmental Protection Agency required refuges in separate fields or large blocks within fields. Planting such non-Bt cotton refuges is credited with preventing evolution of resistance to Bt cotton by pink bollworm in Arizona for more than a decade. By contrast, despite a similar requirement for planting refuges in India, farmers there did not comply and pink bollworm rapidly evolved resistance. The ingenious strategy used in China entails interbreeding Bt cotton with non-Bt cotton, then crossing the resulting first-generation hybrid offspring and planting the second-generation hybrid seeds. This generates a random mixture within fields of 75 percent Bt cotton plants side-by-side with 25 percent non-Bt cotton plants. “Because cotton can self-pollinate, the first-generation hybrids must be created by tedious and costly hand pollination of each flower,” says Tabashnik. “However, hybrids of the second generation and all subsequent generations can be obtained readily via self-pollination. So, the hybrid mix and its benefits can be maintained in perpetuity.” Tabashnik calls this strategy revolutionary because it was not designed to fight resistance and arose without mandates by government agencies. Rather, it emerged from the farming community of the Yangtze River Valley. While most previous attention has focused on the drawbacks of interbreeding between genetically engineered and conventional plants, the authors point out that the new results demonstrate gains from such hybridization. “For the growers in China, this practice provides short-term benefits,” Tabashnik adds. “It’s not a short-term sacrifice imposed on them for potential long-term gains. The hybrid plants tend to have higher yield than the parent plants, and the second-generation hybrids cost less, so it’s a market-driven choice for immediate advantages, and it promotes sustainability. Our results show 96 percent pest suppression and 69 percent fewer insecticide sprays.” Although seed mixtures of corn have been planted in the United States since 2010, the effects of seed mixtures on pest adaptation were not tested before on a large scale, he explains. “Our study provides the first evidence that planting mixtures of Bt and non-Bt seeds within fields has a resistance-delaying or, in this case, resistance-reversing effect,” Tabashnik says. Unlike the strategy in China, the corn seed mixtures planted in the US do not involve interbreeding. Also, the corn seed mixtures have as little as 5 percent non-Bt corn, which may not be enough to battle resistance effectively. “This study gives a new option for managing resistance that is very convenient for small-scale farmers and could be broadly helpful in developing countries like China and India,” explains coauthor Kongming Wu, who led the work conducted in China and is a professor in the Institute of Plant Protection in Beijing. “A great thing about this hybrid seed mix strategy is that we don’t have to worry about growers’ compliance or regulatory issues,” Tabashnik says. “We know it works for millions of farmers in the Yangtze River Valley. Whether it works elsewhere remains to be determined.” Grants from the National Natural Science Foundation of China, China’s Key Project for Breeding Genetically Modified Organisms, and USDA Biotechnology Risk Assessment supported the research.


Nawrot J.,Institute of Plant Protection | Harmatha J.,Czech Institute of Organic Chemistry And Biochemistry
Phytochemistry Reviews | Year: 2012

This review summarises information on compounds of plant origin and plant products as feeding inhibitors for stored product insects. More than 200 compounds (mostly sesquiterpenes) and over 160 plant extracts have been tested to date. Indeed, we did not consider substances stimulating olfactory receptors (repellents) or compounds just toxic to insects. The main scope of the review is to enable best choice for the most active, as well as biorationally suitable substances, for evolving further rational experiments in future. Feeding inhibitors may be used along with food or sex attractants in biorational control of the stored food pests. However, each semiochemical should be submitted to a formal registration process before its use in practice. © 2013 Springer Science+Business Media Dordrecht.


Lozowicka B.,Institute of Plant Protection
Science of the Total Environment | Year: 2015

The presence of pesticide residues in apples raises serious health concerns, especially when the fresh fruits are consumed by children, particularly vulnerable to the pesticide hazards. This study demonstrates the results from nine years of investigation (2005-2013) of 696 samples of Polish apples for 182 pesticides using gas and liquid chromatography and spectrophotometric techniques. Only 33.5% of the samples did not contain residues above the limit of detection. In 66.5% of the samples, 34 pesticides were detected, of which maximum residue level (MRL) was exceeded in 3%. Multiple residues were present in 35% of the samples with two to six pesticides, and one sample contained seven compounds. A study of the health risk for children, adults and the general population consuming apples with these pesticides was performed. The pesticide residue data have been combined with the consumption of apples in the 97.5 percentile and the mean diet. A deterministic model was used to assess the chronic and acute exposures that are based on the average and high concentrations of residues. Additionally, the "worst-case scenario" and "optimistic case scenario" were used to assess the chronic risk. In certain cases, the total dietary pesticide intake calculated from the residue levels observed in apples exceeds the toxicological criteria. Children were the group most exposed to the pesticides, and the greatest short-term hazard stemmed from flusilazole at 624%, dimethoate at 312%, tebuconazole at 173%, and chlorpyrifos methyl and captan with 104% Acute Reference Dose (ARfD) each. In the cumulative chronic exposure, among the 17 groups of compounds studied, organophosphate insecticides constituted 99% acceptable daily intake (ADI). The results indicate that the occurrence of pesticide residues in apples could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring and tighter regulation of pesticide residues is recommended. © 2014 Elsevier B.V.


The experiment was conducted in the 2006-2008 time period, in Nienadówka near Rzeszów, Poland (50°11' N, 22°06' E). The high suitability of light traps for the monitoring of Ostrinia nubilalis Hbn. moth flights on maize fields was shown. These light traps were compared to the pheromone types of traps; the "delta" model, and the "funnel" with a pheromone dispenser containing Z-11-tetradecenyl acetate (series ONC036A and ONC048A/107). In the light trap, the first moths were found in the second decade or third decade of June. The population peak was in the first decade or second decade of July, and the end of the flight in August. In September 2007 and 2008, single O. nubilalis moths collected in the light trap indicated the presence of a small second pest generation. The first male moths were captured in the pheromone traps in the third decade of June or the first decade of July, with a slightly marked population peak in the first or second decade of July. The moth flight ended in the last decade of July.The first egg clusters of O. nubilalis were usually recorded 4-7 days after the first moths were found in the light trap. In the pheromone traps, the first male O. nubilalis individuals were usually found a few days following the oviposition of the first pest egg clusters, except in 2006, when the moths presence was observed in the field 2-3 days before the first eggs were found on maize plants.


Kozlowski J.,Institute of Plant Protection
Journal of Plant Protection Research | Year: 2012

This paper lists alien invasive species of slugs occurring on crops grown in the ground and under covers, as well as in adjacent habitats. It gives a description of their origin, distribution within Poland, frequency of occurrence in different habitats, and an evaluation of the danger to cultivated plants posed by particular slug species. Based on reports in the literature and the results of original research, basic data is presented concerning the biology and harmfulness of these slugs on crops. The potential risk of the spreading of invasive slug species is evaluated, as well as their adverse impact on crop plants. It has been concluded that a major risk to the biodiversity of agrocenoses and to cultivated plants is currently posed by the slugs Arion lusitanicus, A. rufus and A. distinctus. These slugs are spreading rapidly within Poland, often occur in large numbers, and do significant damage to various species of plant.


This article describes a substantially improved multi-residue method for the determination of a large number of pesticides in cereal samples (wheat, rye, barley, oats, maze, buckwheat etc.) and various animal feeds. The sample preparation method and the GC-MS/MS acquisition method were modified to accommodate new complex cereal and feed matrices and to extend the existing analytical scope to 167 pesticides. The co-extractives were reduced by the joint use of primary secondary amine (PSA) and octadecyl (C18), 75mg and 50mg/1mL of acetonitrile extract, in the presence of MgSO 4, and thus the optimal recovery and analytical selectivity were obtained simultaneously. The new cleanup procedure was faster and easier to handle than our previously applied cleanup procedure. The overall recoveries of the pesticides from buckwheat and rye at the three spiking levels of 0.01, 0.05 and 0.25mgkg -1 were 96±9% with relative standard deviations of 10±4% on average. At the lowest spiking level of 0.01mgkg -1, 137 of 167 pesticide residues (82%) fulfilled the validation criteria with recoveries in the range of 70-120% and RSDs less or equal 20% whereas in the previous approach it was 93 out of 140 analytes (66%). The developed method was implemented in a routine analysis of approximately 900 real samples, providing an increased scope of the analysis, improved analytical performance parameters and improved ruggedness versus the previous approach. A total of 17% analyzed samples contained pesticide residues. There were 24 different compounds encountered in the samples, of which pirimiphos-methyl, tebuconazole, deltamethrin, and chlorpyrifos-methyl were the most frequent ones. © 2012 Elsevier B.V.


In the present work, the feasibility of the combined use of concurrent solvent recondensation-large volume injection (CSR-LVI) and interspersed calibration for pesticide residue analysis was investigated. Splitless injections of 5-20μL extracts containing 0.25-1g sample per mL-1 were made into a Carbofrit packed liner and a 0.53mm I.D., uncoated and deactivated retention gap. The determination was achieved by gas chromatography-tandem quadrupole mass spectrometry (GC-QqQ-MS/MS). The evaluation of the proposed approach was based on analysis of real samples representing a diverse range of commodities such as apples, barley malt, blackcurrants, carrots, clemetines, grapes, leek, plums, rapeseed (green plants) rucola, strawberries and tomatoes. The samples contained a total of 36 different incurred pesticides at different concentration levels. Also, analyses were carried out of artificial samples representing six differing matrices (apples, blackcurrants, carrots, huckleberry, strawberry and tomatoes) which were spiked with pesticides at known concentrations before proceeding with the extraction. When using 15 and 20μL CSR-LVI injection, a decrease of about 30% in peak heights compared with injection of 5μL was observed. In the case of 5 and 10μL injections, no significant difference was observed when employing to the quantification of the incurred and spiked pesticide residues. In the evaluated experimental variants, overall recoveries of the pesticides were 92±5% with relative standard deviations of 12±4% on average. All individual recoveries were in the range between 72 and 103 with RSD between 4 and 21%. About 15% of the instrument run time was saved by the application of interspersed calibration with standards injected between sample extracts. © 2011 Elsevier B.V.


European corn borer (ECB) (Ostrinia nubilalis Hbn.) is currently the most dangerous maize pest in Poland. During last five years the pest was recorded in 14 Polish voivodeships, covering over half of the country's area. The greatest harmful activity of the caterpillars was observed in warm southern regions of Poland.Field experiments carried out in southern Poland in the 2006-2007 growing seasons demonstrated that the average plant damage of non-Bt hybrids by O. nubilalis caterpillars varied between 40.0% and 44.0% in 5 locations and two seasons. Under the same pest pressure a high level of resistance of genetically modified (GM) Bt maize (MON 810) cultivars, expressing Cry1Ab toxic protein to infestation by ECB was noted. The average plant infestation of transgenic hybrids was equal to 0.5-0.7% in the same locations. Only some slight symptoms of injuries, such as small number of holes in stalks and gnawing of cobs was observed. Moreover, the tested transgenic hybrids demonstrated a high suitability for climate and soil conditions in Poland, providing early crops of high yield.

Loading Institute of Plant Protection collaborators
Loading Institute of Plant Protection collaborators