Institute of Oral Bioscience

Oral, North Korea

Institute of Oral Bioscience

Oral, North Korea
SEARCH FILTERS
Time filter
Source Type

Kim J.-S.,Institute of Oral Bioscience | Kim J.-S.,Chonbuk National University | Lee Y.-H.,Institute of Oral Bioscience | Ko Y.-H.,Chonbuk National University | And 3 more authors.
Biology of Sport | Year: 2014

The study investigated the effect of high- and low-intensity exercise training on inflammatory reaction of blood and skeletal muscle in streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats (243 ± 7 g, 8 weeks). The rats completed treadmill running in either high-intensity exercise (6 weeks of exercise training, acute bouts of exercise) or low-intensity exercise (6 weeks of exercise training). Non-running, sedentary rats served as controls. To induce diabetes mellitus, rats received a peritoneal injection of STZ (50 mg kg-1). Rats were sacrificed immediately after an acute bout of exercise and 6 weeks of exercise training. Inflammatory factors were analyzed by ELISA and by immune blotting from the soleus and extensor digitorum longus muscles. In the serum, inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-4) and reactive oxygen species (ROS) (nitric oxide and malondialdehyde) increased in diabetic rats. However, all exercise training groups displayed reduced inflammatory cytokines and reactive oxygen species. In skeletal muscles, low-intensity exercise training, but not high intensity exercise, reduced the levels of COX-2, iNOS, and MMP-2, which were otherwise markedly elevated in the presence of STZ. Moreover, the levels of GLUT-4 and MyoD were effectively increased by different exercise intensity and exercise duration. Low-intensity exercise training appeared most effective to reduce diabetes-related inflammation. However, high-intensity training also reduced inflammatory factors in tissue-specific muscles. The data implicate regular exercise in protecting against chronic inflammatory diseases, such as diabetes.


PubMed | Institute of Oral Bioscience and Chonbuk National University
Type: Journal Article | Journal: Biology of sport | Year: 2014

The study investigated the effect of high- and low-intensity exercise training on inflammatory reaction of blood and skeletal muscle in streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats (243 7 g, 8 weeks). The rats completed treadmill running in either high-intensity exercise (6 weeks of exercise training, acute bouts of exercise) or low-intensity exercise (6 weeks of exercise training). Non-running, sedentary rats served as controls. To induce diabetes mellitus, rats received a peritoneal injection of STZ (50 mg kg(-1)). Rats were sacrificed immediately after an acute bout of exercise and 6 weeks of exercise training. Inflammatory factors were analyzed by ELISA and by immune blotting from the soleus and extensor digitorum longus muscles. In the serum, inflammatory cytokines (IL-1, TNF-, IL-6, IL-4) and reactive oxygen species (ROS) (nitric oxide and malondialdehyde) increased in diabetic rats. However, all exercise training groups displayed reduced inflammatory cytokines and reactive oxygen species. In skeletal muscles, low-intensity exercise training, but not high intensity exercise, reduced the levels of COX-2, iNOS, and MMP-2, which were otherwise markedly elevated in the presence of STZ. Moreover, the levels of GLUT-4 and MyoD were effectively increased by different exercise intensity and exercise duration. Low-intensity exercise training appeared most effective to reduce diabetes-related inflammation. However, high-intensity training also reduced inflammatory factors in tissue-specific muscles. The data implicate regular exercise in protecting against chronic inflammatory diseases, such as diabetes.


Ban S.-H.,Institute of Oral Bioscience and BK 21 program | Kwon Y.-R.,Institute of Oral Bioscience and BK 21 program | Pandit S.,Institute of Oral Bioscience and BK 21 program | Lee Y.-S.,Sun Moon University | And 2 more authors.
Fitoterapia | Year: 2010

Polygonum cuspidatum root has been traditionally used for the treatment of dental diseases in Korea. The purpose of this study was to evaluate effects of P. cuspidatum root on the development of dental caries, especially its effects against bacterial viability and caries-inducing factors of Strptococcus mutans and Strptococcus sobrinus. Among methanol extract of P. cuspidatum root and its fraction tested, ethyl acetate fraction, composed of polydatin, resveratrol, anthraglycoside B, and emodin, showed inhibitory effects on glycolytic acid production and glucosyltransferase activity of S. mutans and S. sobrinus in addition to antibacterial activities. © 2009 Elsevier B.V. All rights reserved.


Bhattarai J.P.,Institute of Oral Bioscience | Roa J.,University of Otago | Herbison A.E.,University of Otago | Han S.K.,Institute of Oral Bioscience
Endocrinology | Year: 2014

The effect of serotonin (5-HT) on the electrical excitability of GnRH neurons was examined using gramicidin perforated-patch electrophysiology in transgenic GnRH-green fluorescent protein mice. In diestrous female, the predominant effect of 5-HT was inhibition (70%) with 50% of these cells also exhibiting a late-onset excitation. Responses were dose dependent (EC 50 = 1.2μM) and persisted in the presence of amino acid receptor antagonists and tetrodotoxin, indicating a predominant postsynaptic action of 5-HT. Studies in neonatal, juvenile, peripubertal, and adult mice revealed that 5-HT exerted less potent responses fromGnRHneurons with advancing postnatal age in both sexes. In adult male mice, 5-HT exerted less potent hyperpolarizing responses with more excitations compared with females. In addition, adult proestrous female GnRH neurons exhibited reduced inhibition and a complete absence of biphasic hyperpolarization-excitation responses. Studies using 5-HT receptor antagonists demonstrated that the activation of 5-HT1A receptors mediated the inhibitory responses, whereas the excitation was mediated by the activation of 5-HT2A receptors. The 5-HT-mediated hyperpolarization involved both potassium channels and adenylate cyclase activation, whereas the 5-HT excitation was dependent on protein kinase C. The effects of exogenous 5-HT were replicated using fluoxetine, which enhances endogenous 5-HT levels. These studies demonstrate that 5-HT exerts a biphasic action on most GnRH neurons whereby a fast 5HT1A-mediated inhibition occurs alongside a slow 5-HT2A excitation. The balance of 5-HT-evoked inhibition vs excitation is developmentally regulated, sexually differentiated, and variable across the estrous cycle and may play a role in regulation of hypothalamic-pituitarygonadal axis throughout postnatal development. Copyright © 2014 by the Endocrine Society.


Ban S.-H.,Institute of Oral Bioscience | Ban S.-H.,Chonbuk National University | Kim J.-E.,Institute of Oral Bioscience | Kim J.-E.,Chonbuk National University | And 5 more authors.
Molecules | Year: 2012

Dryopteris crassirhizoma is traditionally used as an herbal remedy for various diseases, and has been identified in a previous study as a potential anti-caries agent. In this study, the effect of a methanol extract of D. crassirhizoma on the viability, growth and virulence properties of Streptococcus mutans, a cariogenic dental pathogen, was investigated. In addition, the phytochemical composition of the extract was analyzed. The extract showed bactericidal and bacteriostatic activity against oral bacteria (MIC and MBC of S. mutans: 62.5 and 250 μg/mL, respectively). At two times the MBC, the extract significantly eliminated S. mutans up to 99.9% after 1 h incubation. The extract also dose-dependently reduced growth rates of S. mutans at sub-MIC levels. Furthermore, at sub-MIC levels, virulence properties (acid production, acid tolerance, glucosyltransferase activity and sucrose-dependent adherence) of S. mutans were also inhibited in a dose-dependent manner. GC-MS analysis revealed the presence of mono and disaccharides (44.9%), fatty acids (12.3%) and sugar alcohols (6.8%) in the extract. These data indicate that the extract might be useful for the control of dental caries.


Bai Y.,Institute of Oral Bioscience | Neupane M.P.,Institute of Oral Bioscience | Park I.S.,Institute of Oral Bioscience | Lee M.H.,Institute of Oral Bioscience | And 3 more authors.
Materials Science and Engineering C | Year: 2010

Carbon nanotubes-hydroxyapatite (CNTs-HA) composites were synthesized, using an in situ chemical method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were uniformly absorbed on the CNTs, with strong interfacial bonding. The CNTs-HA composites behaved like single composites when deposited on a titanium substrate by electrophoretic deposition (EPD). EPD was carried out at 10, 20 and 40 V, for 0.5 to 8 min at each voltage. Coating efficiency and weight increased with increasing deposition time, while the slope of the curves decreased, indicating a decrease in deposition rate. The CNTs-HA coating morphology was analyzed with scanning electron microscopy (SEM). The results revealed that decreasing the voltage used for deposition coatings could reduce cracking frequency. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed that the deposition coatings protected the titanium substrate from corroding in simulated body fluid (SBF). In addition, in vitro cellular responses to the CNTs-HA coatings were assessed to investigate the proliferation and morphology of osteoblast cell line. © 2010 Elsevier B.V. All rights reserved.


Kim J.-S.,Institute of Oral Bioscience | Kim J.-S.,Chonbuk National University | Yi H.-K.,Institute of Oral Bioscience
Experimental Gerontology | Year: 2015

Aging is characterized by the progressive decline in mass and function of the skeletal muscle along with increased susceptibility to inflammation, oxidative stress, and atrophy. In this study, we investigate the effect of intermittent bout and single bout exercise training on inflammatory molecules in young (3 months) and old (22 months) male Sprague-Dawley rats. The rats were divided into 6 groups. Young and old rats were randomly assigned for control and two exercise training groups, single bout (S type): 30 min/day, 5 days/week for 6. weeks and intermittent bout (I type): three times for 10 min/day, 5 days/week for 6 weeks respectively. The exercise training was carried out by a treadmill at a speed of 15. m/min (young) or 10 m/min (old) with a slope of 5°. After 48. h of the final exercise bout, muscle samples were collected for biochemical assay. I type exercise training reduced the serum levels of inflammatory molecules such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in old rats. By contrast, interleukin-4 (IL-4) and superoxide dismutase (SOD) were elevated. Consequently in skeletal muscles, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased significantly in the old group of I type. However, the matrix metalloproteinase-2 (MMP-2) level had no positive effects. Also, phosphorylation of mammalian target of rapamycin (p-mTOR) and myogenic differentiation (MyoD) were increased markedly in S and I types of old rats. These results suggest that I type exercise training appears more effective to reduce age-associated inflammatory molecules, and may recommend in regulating against chronic complicated disease induced by aging. © 2015 Elsevier Inc.


Lee Y.-H.,Institute of Oral Bioscience | Bhattarai G.,Institute of Oral Bioscience | Aryal S.,Chonbuk National University | Lee N.-H.,Institute of Oral Bioscience | And 5 more authors.
Applied Surface Science | Year: 2010

This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces. © 2010 Elsevier B.V. All rights reserved.


Yang H.-Y.,Chonbuk National University | Kim J.,Chonbuk National University | Lee K.-Y.,Institute of Oral Bioscience | Jang Y.-S.,Chonbuk National University
Molecular Immunology | Year: 2010

In addition to their essential role in antigen presentation, MHC class II molecules have been widely described as receptors associated with signal transduction involved in regulating B cell function. However, their precise function and mechanism in signal transduction are not yet fully elucidated. Our previous studies demonstrated that cross-linking of MHC class II molecules led to the inhibition of resting B cell activation in which various signal molecules were involved. Especially, Rac-associated ROS-dependent MAP kinases, including ERK1/2 and p38, are involved in MHC class II-associated negative signal transduction in the phorbol 12, 13-dibutyrate (PDBU)-treated, but not LPS-treated, resting B cell line, 38B9. In this study, we further illustrated that PKC regulates downstream signal molecules, including MAP kinases and NF-κB in PDBU-stimulated resting B cells, together with Rac and ROS. In addition, we found that phosphatidylinositol 3-kinase (PI3K)-dependent activation of ERK/p38 MAP kinases was associated with the signaling procedure in PDBU-induced B cell activation. Collectively, Rac/ROS-related PKC and PI3K signaling are involved in a negative regulation cascade through the cross-linking of MHC class II molecules by anti-MHC class II antibodies in resting B cells. © 2010 Elsevier Ltd. All rights reserved.


Kim J.-S.,Institute of Oral Bioscience | Kim J.-S.,Chonbuk National University | Lee Y.-H.,Institute of Oral Bioscience | Choi D.-Y.,Chonbuk National University | Yi H.-K.,Institute of Oral Bioscience
Journal of Sports Science and Medicine | Year: 2015

The skeletal muscle in aged rats adapts rapidly following a period of exercise. This adaptation includes structural remodeling and biochemical changes such as an up-regulation of antioxidant enzymes, content of stress and heat shock proteins (HSPs). However, the associated molecular mechanisms mediating different types of exercise training-induced adaptations are not yet completely understood. Therefore, the purpose of this study was to investigate the effects of duration and frequency exercise on the expression of HSPs, antioxidant enzymes, and mitogenactivated protein kinase (MAPKs) in the skeletal muscles of aged rats. Young (3-month-old) and aged (20-month-old) male Sprague-Dawley rats were randomly assigned to 6 groups and extensor digitorum longus (EDL; fast twitch muscle fiber) and soleus (SOL; slow twitch muscle fiber) skeletal muscles were collected immediately. The expression pattern of HSPs in skeletal muscles was decreased in old groups compared with young groups. Especially, HSPs showed lower expression in SOL than EDL muscle. Interestingly, HSPs in aged rats was increased significantly after S1 (single long-duration; 1×30 min, 5 days/week for 6 weeks) and M1 types (multiple short-duration; 3×10 min·day -1, 5 days·week-1 for 6 weeks) than S2 (single longduration; 1×30 min, 3 days/week for 6 weeks) and M2 (multiple short-duration; 3×10 min·day -1, 3 days·week-1 for 6 weeks) types of exercise training. Also, superoxide dismutase (SODs) showed similar expression as HSP did. On the contrary, the p-ERK and p-JNK were down regulated. In addition, p-p38 level in the SOL muscle was activated markedly in all exercise groups. These results demonstrate that increasing of HSP expression through duration and frequency exercise can lead to protection and training-induced adaptation against aging-induced structural weakness in skeletal muscles. © 2015, Journal of Sports Science and Medicine. All rights reserved.

Loading Institute of Oral Bioscience collaborators
Loading Institute of Oral Bioscience collaborators