Time filter

Source Type

Sun City Center, United States

Ahadian S.,Tohoku University | Ramon-Azcon J.,Tohoku University | Estili M.,Japan National Institute of Materials Science | Liang X.,Tohoku University | And 14 more authors.
Scientific Reports | Year: 2014

Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices. Source

Charalampakis G.,Gothenburg University | Belibasakis G.N.,Institute of Oral Biology
Virulence | Year: 2015

Osseointegrated dental implants are now a wellestablished treatment option in the armament of restorative dentistry. These technologically advanced devices are designed to functionally and esthetically replace missing teeth. Despite the revolutionary advances that implants have incurred, they have also provided the oral cavity with new artificial surfaces prone to the formation of oral biofilms, similarly to the hard tissue surfaces of natural teeth. Biofilm formation on the implant surface can trigger the inflammatory destruction of the peri-implant tissue, in what is known as peri-implantitis. The mixed microbial flora of periimplant infections resembles that of periodontal infections, with some notable differences. These are likely to expand with the ever increasing application of metagenomics and metatrascriptomics in the analysis of oral ecology. This review presents the wealth of knowledge we have gained from microbiological methods used in the characterization of periimplant microflora and sheds light over potential new benefits, as well as limitations, of the new sequencing technology in our understanding of peri-implant disease pathogenesis. © 2015 Taylor & Francis Group, LLC. Source

Lopez R.,University of Aarhus | Belibasakis G.N.,Institute of Oral Biology
Virulence | Year: 2015

The current understanding on the role of microbiology on periodontitis causation is reviewed. An appraisal of the literature reveals several issues that have limited the attempts to investigate candidate periodontal pathogens as causes of periodontitis and confirms that only limited epidemiological evidence is available. Several aspects of the contemporary understanding on causal inference are discussed with examples for periodontitis. © 2015 Taylor & Francis Group, LLC. Source

Li Y.,Tsinghua University | Li Y.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases | Liu W.,Tsinghua University | Liu F.,Tsinghua University | And 15 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

The promise of cell therapy for repair and restoration of damaged tissues or organs relies on administration of large dose of cells whose healing benefits are still limited and sometimes irreproducible due to uncontrollable cell loss and death at lesion sites. Using a large amount of therapeutic cells increases the costs for cell processing and the risks of side effects. Optimal cell delivery strategies are therefore in urgent need to enhance the specificity, efficacy, and reproducibility of cell therapy leading to minimized cell dosage and side effects. Here, we addressed this unmet need by developing injectable 3D microscale cellular niches (microniches) based on biodegradable gelatin microcryogels (GMs). The microniches are constituted by in vitro priming human adipose-derived mesenchymal stem cells (hMSCs) seeded within GMs resulting in tissue-like ensembles with enriched extracellular matrices and enhanced cell-cell interactions. The primed 3D microniches facilitated cell protection from mechanical insults during injection and in vivo cell retention, survival, and ultimate therapeutic functions in treatment of critical limb ischemia (CLI) in mouse models compared with free cell-based therapy. In particular, 3D microniche-based therapy with 105hMSCs realized better ischemic limb salvage than treatment with 106free-injected hMSCs, the minimum dosage with therapeutic effects for treating CLI in literature. To the best of our knowledge, this is the first convincing demonstration of injectable and primed cell delivery strategy realizing superior therapeutic efficacy for treating CLI with the lowest cell dosage in mouse models. This study offers a widely applicable cell delivery platform technology to boost the healing power of cell regenerative therapy. Source

Lee M.-H.,Korea Institute of Ceramic Engineering And Technology | Oh N.,Inha University | Lee S.-W.,East-West Center | Leesungbok R.,East-West Center | And 3 more authors.
Biomaterials | Year: 2010

In this study, we demonstrate surfaces with various dimensions of microgrooves fabricated by photolithography and subsequent acid etching that enhance various characteristics of titanium. Microgrooves with truncated V-shape in cross-section from 15 to 90 μm widths enabled us to report their exclusive effects on altering the surface chemistry and on enhancing the surface hydrophilicity, serum protein adsorption and osteoblast maturation on titanium substrata in a microgroove dimension-dependent manner. Further, acid etching and measurement direction separately affected the surface hydrophilicity results. By multiple correlation and regression analyses, surface chemistry, surface hydrophilicity and serum protein adsorption were determined to be the significant influential factors on osteoblast maturation. Within the limitations of this study, we conclude that combined submicron- and microtopography with relevant micro-dimension and structure enhance various characteristics of titanium, including surface hydrophilicity, which act as the essential factors influencing the osteoblast maturation on microgrooved titanium substrata. © 2010 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations