Time filter

Source Type

Klaus C.,Institute of Bacterial Infections and Zoonoses | Ziegler U.,Institute of Novel and Emerging Infectious Diseases | Kalthoff D.,Institute of Diagnostic Virology | Hoffmann B.,Institute of Diagnostic Virology | Beer M.,Institute of Diagnostic Virology
BMC Veterinary Research

Background: By using animal sera as sentinels, natural TBEV foci could be identified and further analyses including investigations of ticks could be initiated. However, antibody response against TBEV-related flaviviruses might adversely affect the readout of such a monitoring. Therefore, the cross-reactivity of the applied TBEV serology test systems - enzyme linked immunosorbent assay (ELISA) and virus neutralization test (VNT) - as well as the longevity of TBEV antibody titres in sheep and goats were investigated in this study.Results: Cross-reactivity of the TBEV antibody test systems with defined antibody-positive samples against selected members of the Flaviviridae family (e.g. Louping ill virus, West Nile virus) was observed for Louping-ill-positive sera only. In contrast, the commercial West Nile virus (WNV) competitive ELISA showed a high level of cross-reactivity with TBEV-specific positive sera.To assess the longevity of TBEV antibody titres, sera from two sheep and two goats, which had been immunized four times with a commercially available TBEV vaccine, were tested routinely over 28 months. In three of the four animals, TBEV-specific antibody titres could be detected over the whole test period.In addition, sera from the years 2010 and 2011 were collected in flocks in different villages of Baden-Württemberg and Thuringia to allow re-examination two to four years after the initial analysis. Interestingly, in most cases the results of the former investigations were confirmed, which may be caused by steadily existing natural TBEV foci.Conclusion: Cross-reactivity must be taken into consideration, particularly for TBEV serology in regions with a prevalence of Louping ill virus and for serological testing of WNV by cross-reactive ELISAs. Furthermore, over-interpretation of single TBEV-positive serological results should be avoided, especially in areas without a TBEV history. © 2014 Klaus et al.; licensee BioMed Central Ltd. Source

Wernike K.,Institute of Diagnostic Virology | Breithaupt A.,Friedrich Loeffler Institute FLI | Keller M.,Institute of Novel and Emerging Infectious Diseases | Hoffmann B.,Institute of Diagnostic Virology | And 2 more authors.

Schmallenberg virus (SBV), a novel orthobunyavirus, was discovered in Europe in late 2011. It causes mild and transient disease in adult ruminants, but fetal infection can lead to abortion or severe malformations. There is considerable demand for SBV research, but in vivo studies in large animals are complicated by their long gestation periods and the cost of high containment housing. The goal of this study was to investigate whether type I interferon receptor knock-out (IFNAR-/-) mice are a suitable small animal model for SBV. Twenty IFNAR-/- mice were inoculated with SBV, four were kept as controls. After inoculation, all were observed and weighed daily; two mice per day were sacrificed and blood, brain, lungs, liver, spleen, and intestine were harvested. All but one inoculated mouse lost weight, and two mice died spontaneously at the end of the first week, while another two had to be euthanized. Real-time RT-PCR detected large amounts of SBV RNA in all dead or sick mice; the controls were healthy and PCR-negative. IFNAR-/- mice are susceptible to SBV infection and can develop fatal disease, making them a handy and versatile tool for SBV vaccine research. © 2012 Wernike et al. Source

Hoffmann B.,Institute of Diagnostic Virology | Tappe D.,Friedrich Loeffler Institute | Tappe D.,German Center for Infection Research | Hoper D.,Institute of Diagnostic Virology | And 15 more authors.
New England Journal of Medicine

Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species. Copyright © 2015 Massachusetts Medical Society. Source

Henning A.-K.,Institute of Molecular Biology | Henning A.-K.,Institute of Novel and Emerging Infectious Diseases | Groschup M.H.,Institute of Novel and Emerging Infectious Diseases | Mettenleiter T.C.,Institute of Molecular Biology | Karger A.,Institute of Molecular Biology
Veterinary Journal

In this study, the bovine plasma proteome was analysed using a three step protocol: (1) plasma was treated with a combinatorial peptide ligand library (CPLL) to assimilate the differences in concentrations of different proteins in raw plasma; (2) CPLL-treated material was fractionated by three standard electrophoretic separation techniques, and (3) samples were analysed by nano-liquid chromatography (nLC) matrix-assisted laser desorption/ionisation (MALDI) time-of-flight tandem (TOF/TOF) mass spectrometry. The efficiencies of three fractionation protocols for plasma proteome analysis were compared.After size fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), resolution of proteins was better and yields of identified proteins were higher than after charge-based fractionation by preparative gel-free isoelectric focussing. For proteins with isoelectric points >6 and molecular weights ≥63. kDa, the best results were obtained with a 'shotgun' approach, in which the CPLL-treated plasma was digested and the peptides, rather than the proteins, were fractionated by gel-free isoelectric focussing. However, the three fractionation techniques were largely complementary, since only about one-third of the proteome was identified by each approach. © 2013 Elsevier Ltd. Source

Schuster I.,Institute of Novel and Emerging Infectious Diseases | Mertens M.,Institute of Novel and Emerging Infectious Diseases | Mrenoshki S.,The Saints | Staubach C.,Institute of Epidemiology | And 6 more authors.
Experimental and Applied Acarology

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, which causes a serious illness with case-fatality rates of up to 80 % in humans. CCHFV is endemic in many countries of Africa, Asia and Southeastern Europe. Next to the countries with endemic areas, the distribution of CCHFV is unknown in Southeastern Europe. As the antibody prevalence in animals is a good indicator for the presence or absence of the virus in a region, seroepidemiological studies can be used for the definition of risk areas for CCHFV. The aim of the present study was to reveal which ruminant species is best suited as indicator for the detection of a CCHFV circulation in an area. Therefore, the prevalence rates in sheep, goats and cattle in different regions of Albania and Former Yugoslav Republic of Macedonia were investigated. As there are no commercial tests available for the detection of CCHFV-specific antibodies in animals, two commercial tests for testing human sera were adapted for the investigation of sera from sheep and goats, and new in-house ELISAs were developed. The investigation of serum samples with these highly sensitive and specific assays (94–100 %) resulted in an overall prevalence rate of 23 % for Albania and of 49 % for Former Yugoslav Republic of Macedonia. Significant lower seroprevalence rates for CCHFV were found in cattle than in small ruminants in given areas. These results indicate that small ruminants are more suitable indicator animals for CCHFV infections and should therefore be tested preferentially, when risk areas are to be identified. © 2015, The Author(s). Source

Discover hidden collaborations