Time filter

Source Type

Matschke J.,University of Hamburg | Buttner A.,University of Rostock | Bergmann M.,Institute of Clinical Neuropathology | Hagel C.,University of Hamburg | And 2 more authors.
International Journal of Legal Medicine | Year: 2014

Methods: We studied brain tissue of AHT victims. Primary outcome measure was the presence of primary traumatic versus hypoxic-ischemic brain injury. The diagnosis of tDAI followed a standardized semiquantitative diagnostic approach yielding a 4-tiered grading scheme (definite, possible, improbable, and none). In addition, results of quantitative immunohistochemical analysis in a subgroup of AHT victims with instant death were compared with matched SIDS controls.Results: In our cohort of 50 AHT victims, none had definite tDAI (no tDAI in 30, tDAI possible in 2, and tDAI improbable in 18). Instead, all AHT victims showed morphological findings indicative of HIE. Furthermore, the subgroup with instant death showed significantly higher counts of damaged axons with accumulation of amyloid precursor protein (APP) in the brainstem adjacent to the central pattern generator of respiratory activity (CPG) (odds ratio adjusted for age, sex, brain weight, and APP-count in other regions = 3.1; 95 % confidence interval = 1.2 to 7.7; p = 0.015).Conclusions: AHT victims in our cohort do not have diffuse TBI or tDAI. Instead, our findings indicate that the encephalopathy in AHT is the due to hypoxic-ischemic injury probably as the result of respiratory arrest due to local damage to parts of the CPG in the brainstem.Background: Infants with abusive head trauma (AHT) have diffuse brain damage with potentially fatal brain swelling. The pathogenesis of the brain damage remains unclear. We hypothesize that brain damage in AHT is due to hypoxic-ischemic injury with hypoxic-ischemic encephalopathy (HIE) rather than primary traumatic brain injury (TBI) with traumatic diffuse axonal injury (tDAI). © 2014, Springer-Verlag Berlin Heidelberg.

Mihm B.,Klinikum Bremen Mitte | Bergmann M.,Institute of Clinical Neuropathology | Bruck W.,University of Gottingen | Probst-Cousin S.,Euregio Klinik Nordhorn
Neuropathology | Year: 2014

To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

Discover hidden collaborations