Time filter

Source Type

Roude D.,Rennes Institute of Physics | Recher G.,Equipe SCANING | Recher G.,Institute Of Neurobiologie Alfred Fessard | Bellanger J.-J.,CNRS Signal and Image Processing Laboratory | And 3 more authors.
Biophysical Journal | Year: 2011

A theoretical far-field second harmonic generation (SHG) imaging radiation pattern is calculated for muscular myosin taking into account both Gouy effect and light diffraction under high focusing excitation. Theoretical analysis, in agreement with experimental results obtained on healthy Xenopus muscles, shows that the increase on intensity at the middle of the sarcomeric SHG intensity pattern is generated by an off-axis constructive interference related to the specific antipolar distribution of myosin molecules within the sarcomere. The best fit of the experimental sarcomeric SHG intensity pattern was obtained with an estimated size of antiparallel, intrathick filaments' packing-width of 115 ± 25 nm localized at the M-band. During proteolysis, experimental sarcomeric SHG intensity pattern exhibits decrease on intensity at the center of the sarcomere. An effective intra- and interthick filaments centrosymmetry of 320 ± 25 nm, in agreement with ultrastructural disorganization observed at the electron microscopy level, was necessary to fit the experimental sarcomeric SHG intensity pattern. Our results show that sarcomeric SHG intensity pattern is very sensitive to misalignment of thick filaments and highlights the potential usefulness of SHG microscopy to diagnose proteolysis-induced muscular disorders. © 2011 Biophysical Society.

Castro-Gonzalez C.,Technical University of Madrid | Castro-Gonzalez C.,CIBER ISCIII | Ledesma-Carbayo M.J.,Technical University of Madrid | Ledesma-Carbayo M.J.,CIBER ISCIII | And 3 more authors.
Birth Defects Research Part C - Embryo Today: Reviews | Year: 2012

Digital atlases of animal development provide a quantitative description of morphogenesis, opening the path toward processes modeling. Prototypic atlases offer a data integration framework where to gather information from cohorts of individuals with phenotypic variability. Relevant information for further theoretical reconstruction includes measurements in time and space for cell behaviors and gene expression. The latter as well as data integration in a prototypic model, rely on image processing strategies. Developing the tools to integrate and analyze biological multidimensional data are highly relevant for assessing chemical toxicity or performing drugs preclinical testing. This article surveys some of the most prominent efforts to assemble these prototypes, categorizes them according to salient criteria and discusses the key questions in the field and the future challenges toward the reconstruction of multiscale dynamics in model organisms. © 2012 Wiley Periodicals, Inc..

Delloye-Bourgeois C.,University of Lyon | Rama N.,University of Lyon | Brito J.,Institute Of Neurobiologie Alfred Fessard | Brito J.,Federal University of Rio de Janeiro | And 2 more authors.
Biochemical and Biophysical Research Communications | Year: 2014

Cell-adhesion molecule-related/Downregulated by Oncogenes (CDO or CDON) was identified as a receptor for the classic morphogen Sonic Hedgehog (SHH). It has been shown that, in cell culture, CDO also behaves as a SHH dependence receptor: CDO actively triggers apoptosis in absence of SHH via a proteolytic cleavage in CDO intracellular domain. We present evidence that CDO is also pro-apoptotic in the developing neural tube where SHH is known to act as a survival factor. SHH, produced by the ventral foregut endoderm, was shown to promote survival of facial neural crest cells (NCCs) that colonize the first branchial arch (BA1). We show here that the survival activity of SHH on neural crest cells is due to SHH-mediated inhibition of CDO pro-apoptotic activity. Silencing of CDO rescued NCCs from apoptosis observed upon SHH inhibition in the ventral foregut endoderm. Thus, the pair SHH/dependence receptor CDO may play an important role in neural crest cell survival during the formation of the first branchial arch. © 2014 Elsevier Inc. All rights reserved.

Luengo-Oroz M.A.,Technical University of Madrid | Luengo-Oroz M.A.,Research Center Biomedica en Red Bioingenieria | Rubio-Guivernau J.L.,Technical University of Madrid | Rubio-Guivernau J.L.,Research Center Biomedica en Red Bioingenieria | And 14 more authors.
IEEE Transactions on Image Processing | Year: 2012

Investigating cell dynamics during early zebrafish embryogenesis requires specific image acquisition and analysis strategies. Multiharmonic microscopy, i.e., second- and third-harmonic generations, allows imaging cell divisions and cell membranes in unstained zebrafish embryos from 1- to 1000-cell stage. This paper presents the design and implementation of a dedicated image processing pipeline (tracking and segmentation) for the reconstruction of cell dynamics during these developmental stages. This methodology allows the reconstruction of the cell lineage tree including division timings, spatial coordinates, and cell shape until the 1000-cell stage with minute temporal accuracy and micrometer spatial resolution. Data analysis of the digital embryos provides an extensive quantitative description of early zebrafish embryogenesis. © 2011 IEEE.

Razy-Krajka F.,Institute Of Neurobiologie Alfred Fessard | Razy-Krajka F.,New York University | Brown E.R.,Stazione Zoologica Anton Dohrn | Brown E.R.,Heriot - Watt University | And 9 more authors.
BMC Biology | Year: 2012

Background: The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates.Methods: The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments.Results: We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins).Conclusion: We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina. © 2012 Razy-Krajka et al; licensee BioMed Central Ltd.

Discover hidden collaborations