Institute of Molecular Physiology and Genetics

Bratislava, Slovakia

Institute of Molecular Physiology and Genetics

Bratislava, Slovakia
SEARCH FILTERS
Time filter
Source Type

Vandael D.H.,NIS Center | Marcantoni A.,NIS Center | Mahapatra S.,NIS Center | Caro A.,Institute of Molecular Physiology and Genetics | And 4 more authors.
Molecular Neurobiology | Year: 2010

L-type Ca2+ channels (LTCCs, Cav1) open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca 2+-dependent physiological processes such as: excitation-contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Cav1.2 and Cav1.3), Cav1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Cav1.3-/- KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Cav1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Cav1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Cav1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability. © 2010 Springer Science+Business Media, LLC.


Laukova M.,Institute of Experimental Endocrinology | Vargovic P.,Institute of Experimental Endocrinology | Csaderova L.,Slovak Academy of Sciences | Chovanova L.,Institute of Experimental Endocrinology | And 4 more authors.
NeuroImmunoModulation | Year: 2012

Objectives: Stress-induced rise in circulating catecholamines (CAs), followed by modulation of β-adrenergic receptors (adrenoceptors, ARs), is one of the pathways involved in the stress-mediated effects of immune functions. The spleen is an organ with a high number of lymphocytes and provides a unique microenvironment in which they reside. Thus, lymphocytes may respond differently to CAs in the spleen than in the circulation. No reports exist concerning the involvement of β-ARs in stress-mediated effects on T and B cells isolated from the spleen. Therefore, our aim was to investigate the effect of single stress exposure on gene expression and cellular localization of β-adrenoceptor subtypes in splenic T and B cells. We tried to correlate changes in adrenoceptors with the expression of apoptotic proteins. Methods: Immobilization (IMMO) was used as a stress model. T and B cells were isolated from rat spleen using magnetically labeled antibodies. The gene expression of individual adrenoceptors and apoptotic proteins was evaluated by real-time PCR. Immunofluorescence was used to evaluate localization and adrenoceptor expression. Results: We have found T cells to be more vulnerable to stress compared to B cells, because of increased β 1-, β 2-and β 3-ARs after a single IMMO. Moreover, β 2-ARs translocated from the nucleus to the plasma membrane in T cells after IMMO. The rise in β-ARs most probably led to the rise of Bax mRNA and Bax to Bcl-2 mRNA ratio. This might suggest the induction of an apoptotic process in T cells. Conclusion: Higher susceptibility of T cells to stress via modulation of β-ARs and apoptotic proteins might shift the immune responsiveness in the spleen. Copyright © 2012 S. Karger AG, Basel.


Dremencov E.,Institute of Molecular Physiology and Genetics | Dremencov E.,Slovak Academy of Sciences | Csatlosova K.,Institute of Molecular Physiology and Genetics | Durisova B.,Institute of Molecular Physiology and Genetics | And 3 more authors.
International Journal of Neuropsychopharmacology | Year: 2017

The antidepressant effect of physical exercise has been reported in several clinical and animal studies. Since serotonin, norepinephrine, and dopamine play a central role in depression, it is possible that the beneficial effects of physical exercise are mediated via monoamine pathways. This study investigates the effects of voluntary wheel running on the excitability of monoamine neurons. Materials and Methods: Male Sprague-Dawley rats were used in the study. Voluntary wheel running (VWR) rats were housed in individual cages with free access to a running wheel, while control animals were housed in standard laboratory cages. After three weeks, the rats were anesthetized, and in vivo electrophysiological recordings were taken from dorsal raphe nucleus serotonin neurons, locus coeruleus norepinephrine neurons, and ventral tegmental dopamine neurons. Results: VWR stimulated activity in serotonin, but not in norepinephrine or dopamine neurons. Subsequently, acute administration of the selective serotonin reuptake inhibitor escitalopram in control rats led to complete suppression of serotonin neurons; this suppression was reversed by subsequent administration of selective antagonist of serotonin-1A receptors, WAY100135. Escitalopram induced only partial inhibition of serotonin neurons in the VWR rats while WAY100135 increased the firing activity of serotonin neurons above the baseline value. Conclusions: The beneficial effect of physical exercise on mood is mediated, at least in part, via activation of serotonin neurons. Physical exercise can potentiate the response to selective serotonin reuptake inhibitors by increasing the basal firing activity and diminishing selective serotonin reuptake inhibitor-induced inhibition of serotonin neurons. © 2017 The Author.


Bauerova-Hlinkova V.,Slovak Academy of Sciences | Bauerova-Hlinkova V.,University of Cardiff | Hostinova E.,Slovak Academy of Sciences | Gasperik J.,Slovak Academy of Sciences | And 6 more authors.
Protein Expression and Purification | Year: 2010

We report the domain analysis of the N-terminal region (residues 1-759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR21-606·His6, RyR2391-606·His6, RyR2409-606·His6, Trx·RyR2384-606·His6, Trx·RyR2391-606·His6 and Trx·RyR2409-606·His6. The folding of RyR21-606·His6 was analyzed by circular dichroism spectroscopy resulting in α-helix and β-sheet content of ∼23% and ∼29%, respectively, at temperatures up to 35 °C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR21-606·His6, resulted in the appearance of two specific subfragments of ∼40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His6·Tag antibody indicated that RyR21-606·His6 is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively. © 2010 Elsevier Inc.


Nemethova M.,Institute of Molecular Physiology and Genetics | Bolcekova A.,Comenius University | Ilencikova D.,Comenius University | Durovcikova D.,Slovak Medical University | And 6 more authors.
Annals of Human Genetics | Year: 2013

We performed a complex analysis of the neurofibromatosis type 1 (NF1) gene in Slovakia based on direct cDNA sequencing supplemented by multiple ligation dependent probe amplification (MLPA) analysis. All 108 patients had café-au-lait spots, 85% had axilary and/or inguinal freckling, 61% neurofibromas, 36% Lisch nodules of the iris and 31% optic pathway glioma, 5% suffered from typical skeletal disorders, and 51% of patients had family members with NF1. In 78 of the 86 (90.7%) index patients our analysis revealed the presence of NF1 mutations, 68 of which were small changes (87.2%), including 39 (50%) novel. Among the identified mutations the most prevalent were small deletions and insertions causing frameshift (42.3%), followed by nonsense (14.1%), missense (12.8%), and typical splicing (11.5%) mutations. Type 1 NF1 deletions and intragenic deletions/duplication were identified in five cases each (6.4%). Interestingly, in five other cases nontypical splicing variants were found, whose real effect on NF1 transcript would have remained undetected if using a DNA-based method alone, thus underlying the advantage of using the cDNA-based sequencing. We show that Slovak NF1 patients have a similar repertoire of NF1 germline mutations compared to other populations, with some prevalence of small deletions/insertions and a decreased proportion of nonsense mutations. © 2013 John Wiley & Sons Ltd/University College London.


PubMed | Institute of Molecular Physiology and Genetics
Type: Journal Article | Journal: Annals of human genetics | Year: 2014

We performed a complex analysis of the neurofibromatosis type 1 (NF1) gene in Slovakia based on direct cDNA sequencing supplemented by multiple ligation dependent probe amplification (MLPA) analysis. All 108 patients had caf-au-lait spots, 85% had axilary and/or inguinal freckling, 61% neurofibromas, 36% Lisch nodules of the iris and 31% optic pathway glioma, 5% suffered from typical skeletal disorders, and 51% of patients had family members with NF1. In 78 of the 86 (90.7%) index patients our analysis revealed the presence of NF1 mutations, 68 of which were small changes (87.2%), including 39 (50%) novel. Among the identified mutations the most prevalent were small deletions and insertions causing frameshift (42.3%), followed by nonsense (14.1%), missense (12.8%), and typical splicing (11.5%) mutations. Type 1 NF1 deletions and intragenic deletions/duplication were identified in five cases each (6.4%). Interestingly, in five other cases nontypical splicing variants were found, whose real effect on NF1 transcript would have remained undetected if using a DNA-based method alone, thus underlying the advantage of using the cDNA-based sequencing. We show that Slovak NF1 patients have a similar repertoire of NF1 germline mutations compared to other populations, with some prevalence of small deletions/insertions and a decreased proportion of nonsense mutations.

Loading Institute of Molecular Physiology and Genetics collaborators
Loading Institute of Molecular Physiology and Genetics collaborators