Institute of Molecular Pathology IMP

Vienna, Austria

Institute of Molecular Pathology IMP

Vienna, Austria
SEARCH FILTERS
Time filter
Source Type

Demajo S.,Institute of Molecular Pathology IMP | Demajo S.,Catalan Institution for Research and Advanced Studies
Oncogene | Year: 2014

Acute myeloid leukemia (AML) is frequently linked to epigenetic abnormalities and deregulation of gene transcription, which lead to aberrant cell proliferation and accumulation of undifferentiated precursors. ZRF1, a recently characterized epigenetic factor involved in transcriptional regulation, is highly overexpressed in human AML, but it is not known whether it plays a role in leukemia progression. Here, we demonstrate that ZRF1 depletion decreases cell proliferation, induces apoptosis and enhances cell differentiation in human AML cells. Treatment with retinoic acid (RA), a differentiating agent currently used to treat certain AMLs, leads to a functional switch of ZRF1 from a negative regulator to an activator of differentiation. At the molecular level, ZRF1 controls the RA-regulated gene network through its interaction with the RA receptor α (RARα) and its binding to RA target genes. Our genome-wide expression study reveals that ZRF1 regulates the transcription of nearly half of RA target genes. Consistent with our in vitro observations that ZRF1 regulates proliferation, apoptosis, and differentiation, ZRF1 depletion strongly inhibits leukemia progression in a xenograft mouse model. Finally, ZRF1 knockdown cooperates with RA treatment in leukemia suppression in vivo. Taken together, our data reveal that ZRF1 is a key transcriptional regulator in leukemia progression and suggest that ZRF1 inhibition could be a novel strategy to be explored for AML treatment.


Edelman N.B.,Institute of Molecular Pathology IMP | Edelman N.B.,Harvard University | Fritz T.,Institute of Molecular Pathology IMP | Nimpf S.,Institute of Molecular Pathology IMP | And 10 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

The cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells. Attempts to find these primary sensors have largely relied on the Prussian Blue stain that labels cells rich in ferric iron. This method has proved problematic as it has led investigators to conflate iron-rich macrophages with magnetoreceptors. An alternative approach developed by Eder et al. [Eder SH, et al. (2012) Proc Natl Acad Sci USA 109(30):12022-12027] is to identify candidate magnetoreceptive cells based on their magnetic moment. Here, we explore the utility of this method by undertaking a screen for magnetic cells in the pigeon. We report the identification of a small number of cells (1 in 476,000) with large magnetic moments (8-106 fAm2) from various tissues. The development of single-cell correlative light and electron microscopy (CLEM) coupled with electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) permitted subcellular analysis of magnetic cells. This revealed the presence of extracellular structures composed of iron, titanium, and chromium accounting for the magnetic properties of these cells. Application of single-cell CLEM to magnetic cells from the trout failed to identify any intracellular structures consistent with biogenically derived magnetite. Our work illustrates the need for new methods to test the magnetite hypothesis of magnetosensation. © 2015, National Academy of Sciences. All rights reserved.


Jurkin J.,Austrian Academy of Sciences | Henkel T.,Austrian Academy of Sciences | Nielsen A.F.,European Molecular Biology Organization EMBO | Minnich M.,Institute of Molecular Pathology IMP | And 6 more authors.
EMBO Journal | Year: 2014

The unfolded protein response (UPR) is a conserved stress-signaling pathway activated after accumulation of unfolded proteins within the endoplasmic reticulum (ER). Active UPR signaling leads to unconventional, enzymatic splicing of XBP1 mRNA enabling expression of the transcription factor XBP1s to control ER homeostasis. While IRE1 has been identified as the endoribonuclease required for cleavage of this mRNA, the corresponding ligase in mammalian cells has remained elusive. Here, we report that RTCB, the catalytic subunit of the tRNA ligase complex, and its co-factor archease mediate XBP1 mRNA splicing both in vitro and in vivo. Depletion of RTCB in plasma cells of Rtcbfl/fl Cd23-Cre mice prevents XBP1s expression, which normally is strongly induced during plasma cell development. RTCB-depleted plasma cells show reduced and disorganized ER structures as well as severe defects in antibody secretion. Targeting RTCB and/or archease thus represents a promising strategy for the treatment of a growing number of diseases associated with elevated expression of XBP1s. Synopsis The capacity of B cells to differentiate into plasma cells and secrete high amounts of antibodies upon activation relies on the efficient splicing of the XBP1 mRNA, catalyzed by the tRNA ligase complex and its co-factor archease during the unfolded protein response. The tRNA ligase RTCB and its co-factor archease co-localize at the endoplasmic reticulum to catalyze unconventional XBP1 mRNA splicing during the unfolded protein response. The presence of archease is needed to sustain full activity of the tRNA ligase complex and support XBP1 mRNA ligation. Depletion of RTCB in a conditional B-cell-specific knockout mouse model (Rtcbfl/fl Cd23-Cre) prevents XBP1s expression, which in normal conditions is strongly induced during plasma cell development. Ex vivo stimulated RTCB-depleted B cells show distorted ER structures and severe defects in antibody secretion. In vivo, RTCB-deficient mice show significantly reduced levels of serum immunoglobulins after immunization. The capacity of B cells to differentiate into plasma cells and secrete antibodies upon activation relies on the efficient splicing of the XBP1 mRNA, catalyzed by the tRNA ligase complex and its co-factor archease during the unfolded protein response. © 2014 IMBA - Institute of Molecular Biotechnology GmbH. Published under the terms of the CC BY 4.0 license.


Olivieri D.,Austrian Academy of Sciences | Sykora M.M.,Austrian Academy of Sciences | Sachidanandam R.,Mount Sinai School of Medicine | Mechtler K.,Austrian Academy of Sciences | And 2 more authors.
EMBO Journal | Year: 2010

In Drosophila, PIWI proteins and bound PIWI-interacting RNAs (piRNAs) form the core of a small RNA-mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target-dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi-mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de-silencing, to a collapse in piRNA levels and to a failure in Piwi-nuclear accumulation. We show that Armitage and Yb interact physically and co-localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis. © 2010 European Molecular Biology Organization | All Rights Reserved.


Hnisz D.,Christian Doppler Laboratory | Bardet A.F.,Institute of Molecular Pathology IMP | Nobile C.J.,University of California at San Francisco | Petryshyn A.,Christian Doppler Laboratory | And 5 more authors.
PLoS Genetics | Year: 2012

Despite their classical role as transcriptional repressors, several histone deacetylases, including the baker's yeast Set3/Hos2 complex (Set3C), facilitate gene expression. In the dimorphic human pathogen Candida albicans, the homologue of the Set3C inhibits the yeast-to-filament transition, but the precise molecular details of this function have remained elusive. Here, we use a combination of ChIP-Seq and RNA-Seq to show that the Set3C acts as a transcriptional co-factor of metabolic and morphogenesis-related genes in C. albicans. Binding of the Set3C correlates with gene expression during fungal morphogenesis; yet, surprisingly, deletion of SET3 leaves the steady-state expression level of most genes unchanged, both during exponential yeast-phase growth and during the yeast-filament transition. Fine temporal resolution of transcription in cells undergoing this transition revealed that the Set3C modulates transient expression changes of key morphogenesis-related genes. These include a transcription factor cluster comprising of NRG1, EFG1, BRG1, and TEC1, which form a regulatory circuit controlling hyphal differentiation. Set3C appears to restrict the factors by modulating their transcription kinetics, and the hyperfilamentous phenotype of SET3-deficient cells can be reverted by mutating the circuit factors. These results indicate that the chromatin status at coding regions represents a dynamic platform influencing transcription kinetics. Moreover, we suggest that transcription at the coding sequence can be transiently decoupled from potentially conflicting promoter information in dynamic environments. © 2012 Hnisz et al.


Handler D.,Austrian Academy of Sciences | Olivieri D.,Austrian Academy of Sciences | Novatchkova M.,Austrian Academy of Sciences | Novatchkova M.,Institute of Molecular Pathology IMP | And 7 more authors.
EMBO Journal | Year: 2011

PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) form the core of a gonad-specific small RNA silencing pathway that protects the animal genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology as TUDOR domains of various proteins bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analysed the Drosophila TUDOR protein family and identified four previously not characterized TUDOR domain-containing proteins (CG4771, CG14303, CG11133 and CG31755) as essential piRNA pathway factors. We characterized CG4771 (Vreteno) in detail and demonstrate a critical role for this protein in primary piRNA biogenesis. Vreteno physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Vreteno also interacts with the Tdrd12 orthologues CG11133 (Brother of Yb) and CG31755 (Sister of Yb), which are essential for the primary piRNA pathway in the germline and probably replace the function of the related but soma-specific factor Yb. © 2011 European Molecular Biology Organization | All Rights Reserved.


Qian J.,U.S. National Institutes of Health | Wang Q.,Rockefeller University | Dose M.,U.S. National Institutes of Health | Pruett N.,U.S. National Institutes of Health | And 27 more authors.
Cell | Year: 2014

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA+ enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment. © 2014 Elsevier Inc. All rights reserved.


Hofbauer H.F.,University of Graz | Schopf F.H.,University of Graz | Schleifer H.,University of Graz | Knittelfelder O.L.,University of Graz | And 12 more authors.
Developmental Cell | Year: 2014

Membrane phospholipids typically contain fatty acids (FAs) of 16 and 18 carbon atoms. This particularchain length is evolutionarily highly conserved andpresumably provides maximum stability and dynamic properties to biological membranes in response to nutritional or environmental cues. Here, we show that the relative proportion of C16 versus C18 FAs is regulated by the activity of acetyl-CoA carboxylase (Acc1), the first and rate-limiting enzyme of FA de novo synthesis. Acc1 activity is attenuated by AMPK/Snf1-dependent phosphorylation, which is required to maintain an appropriate acyl-chain length distribution. Moreover, we find that the transcriptional repressor Opi1 preferentially binds to C16 over C18 phosphatidic acid (PA) species: thus, C16-chain containing PA sequesters Opi1 more effectively to the ER, enabling AMPK/Snf1 control of PA acyl-chain length to determine the degree of derepression of Opi1 target genes. These findings reveal an unexpected regulatory link between the major energy-sensing kinase, membrane lipid composition, and transcription. © 2014 The Authors.


Ferdous M.,University of Birmingham | Higgins J.D.,University of Birmingham | Osman K.,University of Birmingham | Lambing C.,University of Birmingham | And 8 more authors.
PLoS Genetics | Year: 2012

In this study we have analysed AtASY3, a coiled-coil domain protein that is required for normal meiosis in Arabidopsis. Analysis of an Atasy3-1 mutant reveals that loss of the protein compromises chromosome axis formation and results in reduced numbers of meiotic crossovers (COs). Although the frequency of DNA double-strand breaks (DSBs) appears moderately reduced in Atasy3-1, the main recombination defect is a reduction in the formation of COs. Immunolocalization studies in wild-type meiocytes indicate that the HORMA protein AtASY1, which is related to Hop1 in budding yeast, forms hyper-abundant domains along the chromosomes that are spatially associated with DSBs and early recombination pathway proteins. Loss of AtASY3 disrupts the axial organization of AtASY1. Furthermore we show that the AtASY3 and AtASY1 homologs BoASY3 and BoASY1, from the closely related species Brassica oleracea, are co-immunoprecipitated from meiocyte extracts and that AtASY3 interacts with AtASY1 via residues in its predicted coiled-coil domain. Together our results suggest that AtASY3 is a functional homolog of Red1. Since studies in budding yeast indicate that Red1 and Hop1 play a key role in establishing a bias to favor inter-homolog recombination (IHR), we propose that AtASY3 and AtASY1 may have a similar role in Arabidopsis. Loss of AtASY3 also disrupts synaptonemal complex (SC) formation. In Atasy3-1 the transverse filament protein AtZYP1 forms small patches rather than a continuous SC. The few AtMLH1 foci that remain in Atasy3-1 are found in association with the AtZYP1 patches. This is sufficient to prevent the ectopic recombination observed in the absence of AtZYP1, thus emphasizing that in addition to its structural role the protein is important for CO formation. © 2012 Ferdous et al.


Holzmann J.,Institute of Molecular Pathology IMP | Fuchs J.,Institute of Molecular Pathology IMP | Fuchs J.,Institute of Molecular Biotechnology IMBA | Pichler P.,CD Laboratory for Proteome Analysis | And 3 more authors.
Journal of Proteome Research | Year: 2011

Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2-to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes. © 2011 American Chemical Society.

Loading Institute of Molecular Pathology IMP collaborators
Loading Institute of Molecular Pathology IMP collaborators