Time filter

Source Type

Kudithipudi S.,University of Stuttgart | Lungu C.,University of Stuttgart | Rathert P.,Jacobs University Bremen | Rathert P.,Institute of Molecular Pathology | And 2 more authors.
Chemistry and Biology | Year: 2014

The nuclear receptor binding SET [su(var) 3-9, enhancer of zeste, trithorax] domain-containing protein 1 (NSD1) protein lysine methyltransferase (PKMT) was known to methylate histone H3 lysine 36 (H3K36). We show here that NSD1 prefers aromatic, hydrophobic, and basic residues at the -2, -1 and +2, and +1 sites of its substrate peptide, respectively. We show methylation of 25 nonhistone peptide substrates by NSD1, two of which were (weakly) methylated at the protein level, suggesting that unstructured protein regions are preferred NSD1 substrates. Methylation of H4K20 and p65 was not observed. We discovered strong methylation of H1.5 K168, which represents the best NSD1 substrate protein identified so far, and methylation of H4K44 which was weaker than H3K36. Furthermore, we show that Sotos mutations in the SET domain of NSD1 inactivate the enzyme. Our results illustrate the importance of specificity analyses of PKMTs for understanding protein lysine methylation signaling pathways. © 2014 Elsevier Ltd. All rights reserved. Source

Lin C.-Y.,National Tsing Hua University | Chuang C.-C.,National Center for High Performance Computing | Chuang C.-C.,National Chiao Tung University | Hua T.-E.,National Tsing Hua University | And 6 more authors.
Cell Reports | Year: 2013

How the brain perceives sensory information and generates meaningful behavior depends critically on its underlying circuitry. The protocerebral bridge (PB) is a major part of the insect central complex (CX), a premotor center that may be analogous to the human basal ganglia. Here, by deconstructing hundreds of PB single neurons and reconstructing them into a common three-dimensional framework, we have constructed a comprehensive map of PB circuits with labeled polarity and predicted directions of information flow. Our analysis reveals a highly ordered information processing system that involves directed information flow among CX subunits through 194 distinct PB neuron types. Circuitry properties such as mirroring, convergence, divergence, tiling, reverberation, and parallel signal propagation were observed; their functional and evolutional significance is discussed. This layout of PB neuronal circuitry may provide guidelines for further investigations on transformation of sensory (e.g., visual) input into locomotor commands in fly brains. © 2013 The Authors. Source

Maier H.J.,University of Ulm | Wirth T.,University of Ulm | Beug H.,Institute of Molecular Pathology
Cancers | Year: 2010

Pancreatic carcinoma is the fourth-leading cause of cancer death and is characterized by early invasion and metastasis. The developmental program of epithelial-mesenchymal transition (EMT) is of potential importance for this rapid tumor progression. During EMT, tumor cells lose their epithelial characteristics and gain properties of mesenchymal cells, such as enhanced motility and invasive features. This review will discuss recent findings pertinent to EMT in pancreatic carcinoma. Evidence for and molecular characteristics of EMT in pancreatic carcinoma will be outlined, as well as the connection of EMT to related topics, e.g., cancer stem cells and drug resistance. © 2010 by the authors; licensee MDPI, Basel, Switzerland. Source

Kramer J.M.,Radboud University Nijmegen | Kochinke K.,Radboud University Nijmegen | Oortveld M.A.W.,Radboud University Nijmegen | Marks H.,Radboud University Nijmegen | And 11 more authors.
PLoS Biology | Year: 2011

The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory is an emerging field in neuroscience. However, little is known about the "writers" of the neuronal epigenome and how they lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9). EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells, which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT mutants occurs at 5% of the euchromatic genome and is enriched at the 5′ and 3′ ends of distinct classes of genes that control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel insights into the epigenetic control of cognition in health and disease. © 2011 Kramer et al. Source

Lyashenko N.,Institute of Molecular Pathology | Weissenbock M.,Institute of Molecular Pathology | Sharir A.,Weizmann Institute of Science | Erben R.G.,University of Veterinary Medicine Vienna | And 2 more authors.
Developmental Dynamics | Year: 2010

Ror1 is a member of the Ror-family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co-receptor for Wnt5a mediating non-canonical Wnt-signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype. © 2010 Wiley-Liss, Inc. Source

Discover hidden collaborations