Time filter

Source Type

Forne I.,Biomedical Center Munich | Descostes N.,Center Dimmunologie Of Marseille Luminy | Maqbool M.A.,Institute of Molecular Genetics of Montpellier IGMM | Flatley A.,Institute of Molecular Immunology | And 5 more authors.
Transcription | Year: 2015

Dynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD. The monoclonal antibody 1F5 recognizes K7me1/2 residues in CTD and reacts with RNAPIIA. Treatment of cellular extracts with phosphatase or of cells with the kinase inhibitor flavopiridol unmasked the K7me1/2 epitope in RNAPII0, consistent with the association of K7me1/2 marks with phosphorylated CTD peptides. Genome-wide profiling revealed high levels of K7me1/2 marks at the transcriptional start site of genes for sense and antisense transcribing RNAPII. The new K7 modifications further expand the mammalian CTD code to allow regulation of differential gene expression. © 2015 The Author(s). Published with license by Taylor & Francis Group, LLC.


Morgan R.A.,U.S. National Cancer Institute | Chinnasamy N.,U.S. National Cancer Institute | Abate-Daga D.,U.S. National Cancer Institute | Gros A.,U.S. National Cancer Institute | And 28 more authors.
Journal of Immunotherapy | Year: 2013

Nine cancer patients were treated with adoptive cell therapy using autologous anti-MAGE-A3 T-cell receptors (TCR)-engineered T cells. Five patients experienced clinical regression of their cancers including 2 on-going responders. Beginning 1-2 days postinfusion, 3 patients (#'s 5, 7, and 8) experienced mental status changes, and 2 patients (5 and 8) lapsed into comas and subsequently died. Magnetic resonance imagining analysis of patients 5 and 8 demonstrated periventricular leukomalacia, and examination of their brains at autopsy revealed necrotizing leukoencephalopathy with extensive white matter defects associated with infiltration of CD3/CD8 T cells. Patient 7, developed Parkinson-like symptoms, which resolved over 4 weeks and fully recovered. Immunohistochemical staining of patient and normal brain samples demonstrated rare positively staining neurons with an antibody that recognizes multiple MAGE-A family members. The TCR used in this study recognized epitopes in MAGE-A3/A9/A12. Molecular assays of human brain samples using real-time quantitative-polymerase chain reaction, Nanostring quantitation, and deep-sequencing indicated that MAGE-A12 was expressed in human brain (and possibly MAGE-A1, MAGE-A8, and MAGE-A9). This previously unrecognized expression of MAGE-A12 in human brain was possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting MAGE-A family members with highly active immunotherapies. © 2013 by Lippincott Williams & Wilkins.


Desch A.,University of Heidelberg | Strozyk E.A.,Institute of Molecular Immunology | Bauer A.T.,University of Heidelberg | Huck V.,University of Heidelberg | And 3 more authors.
American Journal of Pathology | Year: 2012

Tumor cell extravasation is a critical step in the metastatic cascade and requires interaction between the tumor cell and the endothelium. Although cancer progression depends on a complex network of mechanisms, including inflammation and coagulation, the involvement of tumor-induced endothelium activation and the subsequent release of procoagulatory factors in this process are not well understood. Using tissue sections from patients with malignant melanoma, immunofluorescence studies for the presence of von Willebrand factor (VWF) clearly demonstrated endothelium activation and the formation of ultra-large VWF fibers in these patients. In vitro analyses revealed that supernatants from highly invasive melanoma cells induced an acute endothelium activation measured by VWF, P-selectin, and angiopoietin-2 release. Proteome profiling identified vascular endothelial growth factor A (VEGF-A) as the main mediator of endothelium activation. Inhibition and knock-down of VEGF-A in melanoma cells led to a rigorous decrease in VWF exocytosis. Selective small-interfering RNA to matrix metalloproteinase-2 (MMP-2) inhibited endothelium activation, and this effect correlated with reduced VEGF-A content in the supernatants of melanoma cells. Further experiments showed that active MMP-2 regulates VEGF-A in melanoma cells on a transcriptional level via an integrin αvβ5/ phosphoinositide-3-kinase-dependent pathway. In conclusion, these results indicate an important role of VEGF-A in acute endothelium activation and provide clear evidence that MMP-2 plays a pivotal role in the autocrine regulation of VEGF-A expression in melanoma cells. © 2012 American Society for Investigative Pathology.


Wege A.K.,University of Regensburg | Ernst W.,University of Regensburg | Eckl J.,Institute of Molecular Immunology | Frankenberger B.,Institute of Molecular Immunology | And 5 more authors.
International Journal of Cancer | Year: 2011

The immunological impact on antibody-based anticancer therapies remains incompletely understood due to the lack of appropriate animal models for in vivo analysis. Here, we present a novel humanized tumor mouse (HTM) model, generated by concurrent transplantation of human hematopoietic stem cells (HSCs) and human breast cancer cells in neonatal NOD-scid IL2Rγnull mice. Five weeks after intrahepatic transplantation, a functional human immune system was developed in all organs, and, in addition, tumor cells were detectable in lung and bone marrow (early dissemination). After 3 months posttransplant, tumor-cell effusions and macroscopic tumors associated with liver or spleen were found. Furthermore, disseminated cells in different lymphoid and nonlymphoid organs were measurable. Tumor growth was accompanied by specific T-cell maturation and tumor cell-specific T-cell activation. In addition, Natural-Killer cell accumulation and activation were observed in HTM, which was further enhanced upon IL-15 treatment facilitating the possibility of immune cell modulation in, e.g., antibody-dependent cellular cytotoxicity-based immunotherapeutic approaches. This novel mouse model makes it possible to combine transfer of MHC mismatched tumor cells together with human HSCs resulting in a solid coexistence and interaction without evidence for rejection. Overall, humanized tumor mice represent a powerful in vivo model that for the first time permits the investigation of human immune system-related target cancer therapy and resistance. © 2011 UICC.


Karalar L.,University of Regensburg | Lindner J.,University of Regensburg | Lindner J.,Institute of Molecular Immunology | Schimanski S.,University of Regensburg | And 3 more authors.
Clinical Microbiology and Infection | Year: 2010

Human bocavirus (HBoV) was recently described as a new member of the Parvoviridae. In order to investigate the suggested association of HBoV with respiratory and gastric disease in infants and young children, sera of 357 paediatric patients hospitalized with infectious and non-infectious diseases were retrospectively analyzed for the presence of HBoV DNA and virus-specific antibodies using quantitative PCR and ELISA, respectively. HBoV seroprevalence was determined to range from 25% in infants younger than 1 year of age to 93% in children aged more than 3 years. Viral loads between 1 × 10 2 and 1.2 × 10 6 geq/mL were observed in 6.7% (20/297) of sera obtained preferentially from young children suffering from infectious diseases. HBoV genomes were furthermore detected in 5% (3/60) of sera collected from individuals with non-infectious illnesses. HBoV DNA was present most frequently in patients with respiratory disease (9.6%). Whereas only 5.2% of patients with upper respiratory tract disease were viraemic, HBoV DNA was found in 14.6% and 10.0% of patients with lower respiratory tract illness and pneumonia, respectively. Acute HBoV infections were also observed in 7.5% of patients with gastroenteritis and in one child with inflammatory bowel disease. None of 77 patients hospitalized for various other infectious diseases (e.g. rash, urinary tract infection, meningitis) displayed viraemia. In 60.9% and 47.8% of DNA-positive children, HBoV-specific IgM and IgG was observed, respectively. The present prospective study provides comprehensive data on the clinical association of acute HBoV infection with respiratory illness and on the seroprevalence of virus-specific antibodies in children. © 2009 The Authors. Journal Compilation.


Knolle P.A.,Institute of Molecular Immunology | Thimme R.,University Hospital Freiburg
Gastroenterology | Year: 2014

The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.


Oak P.S.,Ludwig Maximilians University of Munich | Kopp F.,Ludwig Maximilians University of Munich | Thakur C.,Max Planck Institute of Biochemistry | Ellwart J.W.,Institute of Molecular Immunology | And 5 more authors.
International Journal of Cancer | Year: 2012

A major obstacle in the successful treatment of cancer is the occurrence of chemoresistance. Cancer cells surviving chemotherapy and giving rise to a recurrence of the tumor are termed cancer stem cells and can be identified by elevated levels of certain stem cell markers. Eradication of this cell population is a priority objective in cancer therapy. Here, we report elevated levels of stem cell markers in MCF-7 mammospheres. Likewise, an upregulation of HER2 and its differential expression within individual cells of mammospheres was observed. Sorting for HER2high and HER2low cells revealed an upregulation of stem cell markers NANOG, OCT4 and SOX2 in the HER2 low cell fraction. Accordingly, HER2low cells also showed reduced proliferation, ductal-like outgrowths and an increased number of colonies in matrigel. Xenografts from subcutaneously injected HER2low sorted cells exihibited earlier onset but slower growth of tumors and an increase in stem cell markers compared to tumors developed from the HER2 high fraction. Treatment of mammospheres with salinomycin reduced the expression of SOX2 indicating a selective targeting of cancer stem cells. Trastuzumab however, did not reduce the expression of SOX2 in mammospheres. Furthermore, a combinatorial treatment of mammospheres with trastuzumab and salinomycin was superior to single treatment with each drug. Thus, targeting HER2 expressing tumors with anti-HER2 therapies will not necessarily eliminate cancer stem cells and may lead to a more aggressive cancer cell phenotype. Our study demonstrates efficient killing of both HER2 positive cells and cancer stem cells, hence opening a possibility for a new combinatorial treatment strategy. Copyright © 2012 UICC.


Bucklein V.,Clinical Cooperation Group Immunotherapy | Bucklein V.,Ludwig Maximilians University of Munich | Adunka T.,Ludwig Maximilians University of Munich | Mendler A.N.,Institute of Molecular Immunology | And 5 more authors.
OncoImmunology | Year: 2016

Immunotherapy is currently investigated as treatment option in many types of cancer. So far, results from clinical trials have demonstrated that significant benefit from immunomodulatory therapies is restricted to patients with select histologies. To broaden the potential use of these therapies, a deeper understanding for mechanisms of immunosuppression in patients with cancer is needed. Soft-tissue sarcoma (STS) presents a medical challenge with significant mortality even after multimodal treatment. We investigated function and immunophenotype of peripheral natural killer (NK) cells from chemotherapy-naive STS patients (1st line) and STS patients with progression or relapse after previous chemotherapeutic treatment (2nd line). We found NK cells from peripheral blood of both STS patient cohorts to be dysfunctional, being unable to lyse K562 target cells while NK cells from renal cell cancer (RCC) patients did not display attenuated lytic activity. Ex vivo stimulation of NK cells from STS patients with interleukin-2 plus TKD restored cytotoxic function. Furthermore, altered NK cell subset composition with reduced proportions of CD56dim cells could be demonstrated, increasing from 1st- to 2nd-line patients. 2nd-line patients additionally displayed significantly reduced expression of receptors (NKG2D), mediators (CD3ζ), and effectors (perforin) of NK cell activation. In these patients, we also detected fewer NK cells with CD57 expression, a marker for terminally differentiated cytotoxic NK cells. Our results elucidate mechanisms of NK cell dysfunction in STS patients with advanced disease. Markers like NKG2D, CD3ζ, and perforin are candidates to characterize NK cells with effective antitumor function for immunotherapeutic interventions. © 2016 The Author(s). Published with license by Taylor & Francis Group, LLC


PubMed | Ludwig Maximilians University of Munich and Institute of Molecular Immunology
Type: Journal Article | Journal: Oncoimmunology | Year: 2016

Immunotherapy is currently investigated as treatment option in many types of cancer. So far, results from clinical trials have demonstrated that significant benefit from immunomodulatory therapies is restricted to patients with select histologies. To broaden the potential use of these therapies, a deeper understanding for mechanisms of immunosuppression in patients with cancer is needed. Soft-tissue sarcoma (STS) presents a medical challenge with significant mortality even after multimodal treatment. We investigated function and immunophenotype of peripheral natural killer (NK) cells from chemotherapy-naive STS patients (1st line) and STS patients with progression or relapse after previous chemotherapeutic treatment (2nd line). We found NK cells from peripheral blood of both STS patient cohorts to be dysfunctional, being unable to lyse K562 target cells while NK cells from renal cell cancer (RCC) patients did not display attenuated lytic activity. Ex vivo stimulation of NK cells from STS patients with interleukin-2 plus TKD restored cytotoxic function. Furthermore, altered NK cell subset composition with reduced proportions of CD56(dim) cells could be demonstrated, increasing from 1st- to 2nd-line patients. 2nd-line patients additionally displayed significantly reduced expression of receptors (NKG2D), mediators (CD3), and effectors (perforin) of NK cell activation. In these patients, we also detected fewer NK cells with CD57 expression, a marker for terminally differentiated cytotoxic NK cells. Our results elucidate mechanisms of NK cell dysfunction in STS patients with advanced disease. Markers like NKG2D, CD3, and perforin are candidates to characterize NK cells with effective antitumor function for immunotherapeutic interventions.


PubMed | Institute of Molecular Immunology
Type: Journal Article | Journal: Journal of immunology (Baltimore, Md. : 1950) | Year: 2012

CD8(+) tumor-infiltrating T cells (CD8-TILs) are found in many types of tumors including human renal cell carcinoma. However, tumor rejection rarely occurs, suggesting limited functional activity in the tumor microenvironment. In this study, we document that CD8-TILs are unresponsive to CD3 stimulation, showing neither lytic activity, nor lytic granule exocytosis, nor IFN- production. Mechanistically, no deficits in TCR proximal signaling molecules (lymphocyte-specific protein tyrosine kinase, phospholipase C) were identified. In contrast, distal TCR signaling was suppressed, as T cells of TILs showed strongly reduced steady-state phosphorylation of the MAPK ERK and were unable to increase phosphorylation of ERK and JNK as well as AKT and AKT client proteins (IB, GSK3) after stimulation. These deficits were tumor-specific as they were not observed in CD8(+) T cells infiltrating non-tumor kidney areas (CD8(+) non-tumor kidney-infiltrating lymphocytes; CD8-NILs). Diacylglycerol kinase- (DGK-) was more highly expressed in CD8-TILs compared with that in CD8-NILs, and its inhibition improved ERK phosphorylation and lytic granule exocytosis. Cultivation of TILs in low-dose IL-2 reduced DGK- protein levels, increased steady-state phosphorylation of ERK, improved stimulation-induced phosphorylation of ERK and AKT, and allowed more CD8-TILs to degranulate and to produce IFN-. Additionally, the protein level of the AKT client molecule p27kip, an inhibitory cell cycle protein, was reduced, whereas cyclin E, which promotes G1-S phase transition, was increased. These results indicate that the tumor-inflicted deficits of TILs are reversible. DGK- inhibition and provision of IL-2 signals could be strategies to recruit the natural CD8(+) T cells to the anti-tumor response and may help prevent inactivation of adoptively transferred T cells thereby improving therapeutic efficacy.

Loading Institute of Molecular Immunology collaborators
Loading Institute of Molecular Immunology collaborators