Institute of Molecular Biotechnology IMBA

Vienna, Austria

Institute of Molecular Biotechnology IMBA

Vienna, Austria
Time filter
Source Type

Rittinger K.,Francis Crick Institute | Ikeda F.,Institute of Molecular Biotechnology IMBA
Open Biology | Year: 2017

Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. © 2017 The Authors.

Kocher T.,Research Institute of Molecular Pathology IMP | Pichler P.,Christian Doppler Laboratory | Swart R.,Dionex Corporation | Mechtler K.,Research Institute of Molecular Pathology IMP | Mechtler K.,Institute of Molecular Biotechnology IMBA
Proteomics | Year: 2011

In the last 15 years, MS-based protein characterization has expanded at a rapid rate. This success is built upon constantly improving instrumentation and a variety of ingenious methods applied to numerous biological questions. However, the reproducibility of mass spectrometric results is considered by many as insufficient. In part, inadequate quality control might be responsible for the lack of reproducibility. Quality control is rarely discussed in scientific publications. Here, we briefly present measures undertaken in our laboratory to foster a general discussion of the subject. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Steffen P.A.,Institute of Molecular Biotechnology IMBA | Fonseca J.P.,Institute of Molecular Biotechnology IMBA | Ganger C.,Institute of Molecular Biotechnology IMBA | Dworschak E.,Institute of Molecular Biotechnology IMBA | And 3 more authors.
Nucleic Acids Research | Year: 2013

The Polycomb (PcG) and Trithorax (TrxG) group proteins work antagonistically on several hundred developmentally important target genes, giving stable mitotic memory, but also allowing flexibility of gene expression states. How this is achieved in quantitative terms is poorly understood. Here, we present a quantitative kinetic analysis in living Drosophila of the PcG proteins Enhancer of Zeste, (E(Z)), Pleiohomeotic (PHO) and Polycomb (PC) and the TrxG protein absent, small or homeotic discs 1 (ASH1). Fluorescence recovery after photobleaching and fluorescence correlation spectroscopy reveal highly dynamic chromatin binding behaviour for all proteins, with exchange occurring within seconds. We show that although the PcG proteins substantially dissociate from mitotic chromatin, ASH1 remains robustly associated with chromatin throughout mitosis. Finally, we show that chromatin binding by ASH1 and PC switches from an antagonistic relationship in interphase, to a cooperative one during mitosis. These results provide quantitative insights into PcG and TrxG chromatin-binding dynamics and have implications for our understanding of the molecular nature of epigenetic memory. © 2013 The Author(s) 2013.

Fonseca J.P.,Institute of Molecular Biotechnology IMBA | Steffen P.A.,Institute of Molecular Biotechnology IMBA | Muller S.,Johann Radon Institute for Computational and Applied Mathematics RICAM | Lu J.,ETH Zurich | And 3 more authors.
Genes and Development | Year: 2012

Epigenetic memory mediated by Polycomb group (PcG) proteins must be maintained during cell division, but must also be flexible to allow cell fate transitions. Here we quantify dynamic chromatin-binding properties of PH::GFP and PC::GFP in living Drosophila in two cell types that undergo defined differentiation and mitosis events. Quantitative fluorescence recovery after photobleaching (FRAP) analysis demonstrates that PcG binding has a higher plasticity in stem cells than in more determined cells and identifies a fraction of PcG proteins that binds mitotic chromatin with up to 300-fold longer residence times than in interphase. Mathematical modeling examines which parameters best distinguish stem cells from differentiated cells. We identify phosphorylation of histone H3 at Ser 28 as a potential mechanism governing the extent and rate of mitotic PC dissociation in different lineages. We propose that regulation of the kinetic properties of PcG-chromatin binding is an essential factor in the choice between stability and flexibility in the establishment of cell identities. © 2012 by Cold Spring Harbor Laboratory Press.

Taus T.,Research Institute of Molecular Pathology IMP | Kocher T.,Research Institute of Molecular Pathology IMP | Pichler P.,Christian Doppler Laboratory | Paschke C.,Thermo Fisher Scientific | And 4 more authors.
Journal of Proteome Research | Year: 2011

An algorithm for the assignment of phosphorylation sites in peptides is described. The program uses tandem mass spectrometry data in conjunction with the respective peptide sequences to calculate site probabilities for all potential phosphorylation sites. Tandem mass spectra from synthetic phosphopeptides were used for optimization of the scoring parameters employing all commonly used fragmentation techniques. Calculation of probabilities was adapted to the different fragmentation methods and to the maximum mass deviation of the analysis. The software includes a novel approach to peak extraction, required for matching experimental data to the theoretical values of all isoforms, by defining individual peak depths for the different regions of the tandem mass spectrum. Mixtures of synthetic phosphopeptides were used to validate the program by calculation of its false localization rate versus site probability cutoff characteristic. Notably, the empirical obtained precision was higher than indicated by the applied probability cutoff. In addition, the performance of the algorithm was compared to existing approaches to site localization such as Ascore. In order to assess the practical applicability of the algorithm to large data sets, phosphopeptides from a biological sample were analyzed, localizing more than 3000 nonredundant phosphorylation sites. Finally, the results obtained for the different fragmentation methods and localization tools were compared and discussed. © 2011 American Chemical Society.

Fuhrmann J.,Research Institute of Molecular Pathology IMP | Fuhrmann J.,Scripps Research Institute | Mierzwa B.,Institute of Molecular Biotechnology IMBA | Trentini D.,Research Institute of Molecular Pathology IMP | And 4 more authors.
Cell Reports | Year: 2013

Many cellular pathways are regulated by the competing activity of protein kinases and phosphatases. The recent identification of arginine phosphorylation as a protein modification in bacteria prompted us to analyze the molecular basis of targeting phospho-arginine. In this work, we characterize an annotated tyrosine phosphatase, YwlE, that counteracts the protein arginine kinase McsB. Strikingly, structural studies of YwlE reaction intermediates provide a direct view on a captured arginine residue. Together with biochemical data, the crystal structures depict the evolution of a highly specific phospho-arginine phosphatase, with the use of a size-and-polarity filter for distinguishing phosphorylated arginine from other phosphorylated side chains. To confirm the proposed mechanism, we performed bioinformatic searches for phosphatases, employing a similar selectivity filter, and identified a protein in Drosophila melanogaster exhibiting robust arginine phosphatase activity. In sum, our findings uncover the molecular framework for specific targeting of phospho-arginine and suggest that protein arginine (de)phosphorylation may be relevant in eukaryotes. © 2013 The Authors.

Steffen P.A.,Institute of Molecular Biotechnology IMBA | Fonseca J.P.,Institute of Molecular Biotechnology IMBA | Ringrose L.,Institute of Molecular Biotechnology IMBA
BioEssays | Year: 2012

How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins. © 2012 WILEY Periodicals, Inc.

Ikeda F.,Institute of Molecular Biotechnology IMBA
Immunological Reviews | Year: 2015

Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Steffen P.A.,Institute of Molecular Biotechnology IMBA | Ringrose L.,Institute of Molecular Biotechnology IMBA
Nature Reviews Molecular Cell Biology | Year: 2014

In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems-it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis. © 2014 Macmillan Publishers Limited.

Asaoka A.,Institute of Molecular Biotechnology IMBA | Ikeda F.,Institute of Molecular Biotechnology IMBA
International Review of Cell and Molecular Biology | Year: 2015

Ubiquitin is a small modifier protein that conjugates on lysine (Lys) residues of substrates, and it can be targeted by another ubiquitin molecule to form chains through conjugation on the intrinsic Lys residues and methionine (Met) 1 residue. Ubiquitination of substrates by such chains determines the fate of substrates, thereby influencing various biological processes. In this chapter, we focus on apoptosis with an emphasis on the regulation by ubiquitination. The signal transduction of apoptosis is governed not only by the classical function of ubiquitin, which is proteasome-dependent degradation of substrates, but also by the apoptosis signaling complex formation guided by different types of ubiquitin chains. Ubiquitinations of pro- and antiapoptotic proteins are tightly regulated by particular sets of enzymes, such as ubiquitin E3 ligases and deubiquitinases (DUBs). We further discuss ubiquitination in the tumor necrosis factor (TNF) signaling pathway as an example for the ubiquitin-dependent regulation of apoptosis and cell survival. © 2015 Elsevier Inc.

Loading Institute of Molecular Biotechnology IMBA collaborators
Loading Institute of Molecular Biotechnology IMBA collaborators