Time filter

Source Type

Thriemer K.,Korean International Vaccine Institute | Ley B.,Korean International Vaccine Institute | Ley B.,University of Vienna | Ame S.,Public Health Laboratory Pemba Ivo Of Carneri | And 16 more authors.
PLoS ONE | Year: 2012

Background: We conducted a surveillance study to determine the leading causes of bloodstream infection in febrile patients seeking treatment at three district hospitals in Pemba Island, Zanzibar, Tanzania, an area with low malaria transmission. Methods: All patients above two months of age presenting to hospital with fever were screened, and blood was collected for microbiologic culture and malaria testing. Bacterial sepsis and malaria crude incidence rates were calculated for a one-year period and were adjusted for study participation and diagnostic sensitivity of blood culture. Results: Blood culture was performed on 2,209 patients. Among them, 166 (8%) samples yielded bacterial growth; 87 (4%) were considered as likely contaminants; and 79 (4%) as pathogenic bacteria. The most frequent pathogenic bacteria isolated were Salmonella Typhi (n = 46; 58%), followed by Streptococcus pneumoniae (n = 12; 15%). The crude bacteremia rate was 6/100,000 but when adjusted for potentially missed cases the rate may be as high as 163/100,000. Crude and adjusted rates for S. Typhi infections and malaria were 4 and 110/100,000 and 4 and 47/100,000, respectively. Twenty three (51%), 22 (49%) and 22 (49%) of the S.Typhi isolates were found to be resistant toward ampicillin, chloramphenicol and cotrimoxazole, respectively. Multidrug resistance (MDR) against the three antimicrobials was detected in 42% of the isolates. Conclusions: In the presence of very low malaria incidence we found high rates of S. Typhi and S. pneumoniae infections on Pemba Island, Zanzibar. Preventive measures such as vaccination could reduce the febrile disease burden. © 2012 Thriemer et al. Source

Pivovarova O.,German Institute of Human Nutrition | Pivovarova O.,Franklin University | Von Loeffelholz C.,German Institute of Human Nutrition | Von Loeffelholz C.,Friedrich - Schiller University of Jena | And 27 more authors.
Cell Cycle | Year: 2015

Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis. © 2015 Taylor & Francis Group, LLC. Source

Kornfeld J.-W.,Ludwig Boltzmann Research Institute | Kornfeld J.-W.,University of Cologne | Isaacs A.,Erasmus Medical Center | Isaacs A.,Center for Medical Systems Biology | And 17 more authors.
Journal of Clinical Endocrinology and Metabolism | Year: 2011

Context: Known genetic variants influencing serum lipid levels do not adequately account for the observed population variability of these phenotypes. The GH/signal transducers and activators of transcription (STAT) signaling pathway is an evolutionary conserved system that exerts strong effects on metabolism, including that of lipids. Research Design and Methods: We analyzed the association of 11 single-nucleotide polymorphisms (SNP) spanning the STAT5B/STAT5A/STAT3 locus with serum lipid levels in six European populations (n = 5162 nondiabetic individuals). Results: After adjustment for age, sex, alcohol use, smoking, and body mass index, we identified STAT5Bvariants(rs8082391andrs8064638)innovelassociationwithtotal cholesterol (TC; P=0.001and P = 0.002) and low-density lipoprotein cholesterol (P = 0.002 and P = 0.004) levels. The minor alleles of these single-nucleotide polymorphisms were significantly enriched in hyperlipidemic individuals across the six discovery populations (P=0.004 and P=0.006). In transgenic mice deficient for hepatic STAT5A and STAT5B, reduced serum TC levels coincided with reduced hepatic cholesterol biosynthesis as demonstrated using gene expression profiling and pathway enrichment analysis. Conclusions: Genetic variants in STAT5B are associated with TC and low-density lipoprotein cholesterol levels among six populations. Mechanistically, STAT5B transcriptionally regulates hepatic cholesterol homeostasis. Copyright © 2011 by The Endocrine Society. Source

Okulski H.,Institute of Molecular Biotechnology GmbH | Druck B.,Institute of Molecular Biotechnology GmbH | Druck B.,Roche Holding AG | Bhalerao S.,Institute of Molecular Biotechnology GmbH | And 2 more authors.
Epigenetics and Chromatin | Year: 2011

Background. Polycomb/Trithorax response elements (PREs) are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. Results. We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw) reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7) with a PRE from the vestigial (vg) gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT) that is essential for silencing. Conclusions. This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design. © 2011 Okulski et al; licensee BioMed Central Ltd. Source

Hosp J.,University of Vienna | Hosp J.,Institute For Populationsgenetik | Ribarits A.,University of Vienna | Ribarits A.,Austrian Agency for Health and Food Safety | And 16 more authors.
Plant Cell Reports | Year: 2014

Key Message: We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth. Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called DEFECTIVE IN CULLIN NEDDYLATION 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth. © 2014 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations