Entity

Time filter

Source Type


Pustylnyak V.O.,Novosibirsk State University | Lisachev P.D.,Russian Academy of Sciences | Shtark M.B.,Institute of Molecular Biology and Biophysics SB RAMS
Neural Plasticity | Year: 2015

Gene expression plays an important role in the mechanisms of long-term potentiation (LTP), which is a widely accepted experimental model of synaptic plasticity. We have studied the expression of at least 50 genes that are transcriptionally regulated by p53, as well as other genes that are related to p53-dependent processes, in the early phase of LTP. Within 30 min after Schaffer collaterals (SC) tetanization, increases in the mRNA and protein levels of Bax, which are upregulated by p53, and a decrease in the mRNA and protein levels of Bcl2, which are downregulated by p53, were observed. The inhibition of Mdm2 by nutlin-3 increased the basal p53 protein level and rescued its tetanization-induced depletion, which suggested the involvement of Mdm2 in the control over p53 during LTP. Furthermore, nutlin-3 caused an increase in the basal expression of Bax and a decrease in the basal expression of Bcl2, whereas tetanization-induced changes in their expression were occluded. These results support the hypothesis that p53 may be involved in transcriptional regulation during the early phase of LTP. We hope that the presented data may aid in the understanding of the contribution of p53 and related genes in the processes that are associated with synaptic plasticity. © 2015 Vladimir O. Pustylnyak et al. Source


Yarushkin A.,Institute of Molecular Biology and Biophysics SB RAMS | Kachaylo E.,Institute of Molecular Biology and Biophysics SB RAMS | Pustylnyak V.,Novosibirsk State University
British Journal of Pharmacology | Year: 2013

Background and Purpose The dual role of the constitutive androstane receptor (CAR) as both a xenosensor and a regulator of endogenous energy metabolism (lipogenesis and gluconeogenesis) has recently gained acceptance. Here, we investigated the effects of 4-[(4R,6R)-4,6-diphenyl-1,3-dioxan-2-yl]-N, N-dimethylaniline (transpDMA), an effective CAR activator, on the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in rat livers. Experimental Approach The effects of transpDMA were investigated in normal and high-fat diet-fed Wistar rats using real-time PCR, Western blotting, chromatin immunoprecipitation assays (ChIP), glucose tolerance test and insulin tolerance test. Key Results The expression of the gluconeogenic enzymes PEPCK and G6Pase was repressed by transpDMA treatment under fasting conditions. Long-term CAR activation by transpDMA significantly reduced fasting blood glucose levels and improved glucose homeostasis and insulin sensitivity in high-fat diet-fed rats. The metabolic benefits of CAR activation by transpDMA may have resulted from the inhibition of hepatic gluconeogenic genes. ChIP assays demonstrated that transpDMA prevented the binding of forkhead box O1 (FOXO1) to insulin response sequences in the PEPCK and G6Pase gene promoters in rat livers. Moreover, transpDMA-activated CAR inhibited hepatocyte nuclear factor-4α (HNF4α) transactivation by competing with HNF4α for binding to the specific binding element (DR1-site) in the gluconeogenic gene promoters. Conclusions and Implications Our results provide evidence to support the conclusion that transpDMA inhibits the gluconeogenic genes PEPCK and G6Pase through suppression of HNF4α and FOXO1 transcriptional activity. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society. Source


Mostovich L.A.,Institute of Molecular Biology and Biophysics SB RAMS | Prudnikova T.Y.,Institute of Molecular Biology and Biophysics SB RAMS | Kondratov A.G.,NASU Institute of Molecular Biology and Genetics | Gubanova N.V.,RAS Institute of Cytology and Genetics | And 9 more authors.
Epigenetics | Year: 2012

D-glucuronyl C5-epimerase (GLCE) is a potential tumor-suppressor gene involved in heparan sulfate biosynthesis. GLCE expression is significantly decreased in breast tumors; however, the underlying molecular mechanisms remain unclear. This study examined the possible epigenetic mechanisms for GLCE inactivation in breast cancer. Very little methylation of the GLCE promoter region was detected in breast tumors in vivo and in breast cancer cells (MCF7 and T47D) in vitro and GLCE expression in breast cancer cells was not altered by 5-deoxyazacytidine (5-aza-dC) treatment, suggesting that promoter methylation is not involved in regulating GLCE expression. Chromatin activation by Trichostatin A (TSA) or 5-aza-dC/TSA treatment increased GLCE expression by two to 3-fold due to an increased interaction between the GLCE promoter and the TCF4/β-catenin transactivation complex, or H3K9ac and H3K4Me3 histone modifications. However, ectopic expression of TCF4/β-catenin was not sufficient to activate GLCE expression in MCF7 cells, suggesting that chromatin structure plays a key role in GLCE regulation. Although TSA treatment significantly repressed canonical WNT signaling in MCF7 cells, it did not influence endogenous TCF4/β-catenin mRNA levels and activated TCF4/β-catenin-driven transcription from the GLCE promoter, indicating GLCE as a novel target for TCF4/β-catenin complex in breast cancer cells. A correlation was observed between GLCE, TCF4 and β-catenin expression in breast cancer cells and primary tumors, suggesting an important role for TCF4/β-catenin in regulating GLCE expression both in vitro and in vivo. Taken together, the results indicate that GLCE expression in breast cancer is regulated by a combination of chromatin structure and TCF4/β-catenin complex activity. © 2012 Landes Bioscience. Source


Perepechaeva M.,Institute of Molecular Biology and Biophysics SB RAMS | Kolosova N.,RAS Institute of Cytology and Genetics | Grishanova A.,Institute of Molecular Biology and Biophysics SB RAMS
Journal of Physiology and Biochemistry | Year: 2011

Cytochrome P4501A (the CYP1A1 and CYP1A2 enzymes) is known to metabolize anthropogenic xenobiotics to carcinogenic and mutagenic compounds. CYP1A1 transcriptional activation is regulated via the aryl hydrocarbon receptor (AhR)-dependent signal transduction pathway. CYP1A2 activation may occur through the AhR-dependent or AhR-independent signal transduction pathways. We used male Wistar rats to explore possible mechanisms of CYP1A activation induced by exposure to cold and the effects of the protein-tyrosine kinase inhibitors genistein, herbimycin A, and geldanamycin on the properties of hepatic CYP1A1 and CYP1A2 proteins following exposure to cold and to classic CYP1A inducers. The molecular mechanisms of cold-induced CYP1A1 and CYP1A2 activation are different. The CYP1A2 activation apparently occurs at the post-transcriptional level. The CYP1A1 activation, whether caused by exposure to cold or by classic CYP1A inducers, is AhR-dependent and occurs at the transcriptional level. Protein tyrosine kinase inhibitors have no effect on benzo(a)pyrene-induced CYP1A expression but alter cold-induced CYP1A1 activity and the CYP1A1 mRNA level. Thus, treatment with herbimycin A or geldanamycin leads to an increase in CYP1A1 activity, while treatment with genistein increases CYP1A1 mRNA expression and decreases CYP1A2 activity. These data elucidate the molecular mechanisms of cold-induced CYP1A activation and the role of protein kinases in the regulation of CYP1A during exposure to cold. Our results can also help identify the differences between the molecular mechanisms underlying the effects of the classic CYP1A inducers and the effects of cooling. © 2011 University of Navarra. Source


Perepechaeva M.,Institute of Molecular Biology and Biophysics SB RAMS
Journal of physiology and biochemistry | Year: 2011

Cytochrome P4501A (the CYP1A1 and CYP1A2 enzymes) is known to metabolize anthropogenic xenobiotics to carcinogenic and mutagenic compounds. CYP1A1 transcriptional activation is regulated via the aryl hydrocarbon receptor (AhR)-dependent signal transduction pathway. CYP1A2 activation may occur through the AhR-dependent or AhR-independent signal transduction pathways. We used male Wistar rats to explore possible mechanisms of CYP1A activation induced by exposure to cold and the effects of the protein-tyrosine kinase inhibitors genistein, herbimycin A, and geldanamycin on the properties of hepatic CYP1A1 and CYP1A2 proteins following exposure to cold and to classic CYP1A inducers. The molecular mechanisms of cold-induced CYP1A1 and CYP1A2 activation are different. The CYP1A2 activation apparently occurs at the post-transcriptional level. The CYP1A1 activation, whether caused by exposure to cold or by classic CYP1A inducers, is AhR-dependent and occurs at the transcriptional level. Protein tyrosine kinase inhibitors have no effect on benzo(a)pyrene-induced CYP1A expression but alter cold-induced CYP1A1 activity and the CYP1A1 mRNA level. Thus, treatment with herbimycin A or geldanamycin leads to an increase in CYP1A1 activity, while treatment with genistein increases CYP1A1 mRNA expression and decreases CYP1A2 activity. These data elucidate the molecular mechanisms of cold-induced CYP1A activation and the role of protein kinases in the regulation of CYP1A during exposure to cold. Our results can also help identify the differences between the molecular mechanisms underlying the effects of the classic CYP1A inducers and the effects of cooling. Source

Discover hidden collaborations