Entity

Time filter

Source Type

Garmisch-Partenkirchen, Germany

Holst J.,Albert Ludwigs University of Freiburg | Grote R.,Institute of Meteorology and Climate Research | Offermann C.,Albert Ludwigs University of Freiburg | Ferrio J.P.,Albert Ludwigs University of Freiburg | And 3 more authors.
International Journal of Biometeorology | Year: 2010

We investigated the water balances of two beech stands (Fagus sylvatica L.) on opposite slopes (NE, SW) of a narrow valley near Tuttlingen in the southern Swabian Jura, a low mountain range in Southwest Germany. Our analysis combines results from continuous measurements of forest meteorological variables significant to the forest water balance, stand transpiration (ST) estimates from sap flow measurements, and model simulations of microclimate and water fluxes. Two different forest hydrological models (DNDC and BROOK90) were tested for their suitability to represent the particular sites. The investigation covers the years 2001-2007. Central aims were (1) to evaluate meteorological simulations of variables below the forest canopy, (2) to evaluate ST, (3) to quantify annual water fluxes for both beech stands using the evaluated hydrological models, and (4) to analyse the model simulations with regard to assumptions inherent in the respective model. Overall, both models were very well able to reproduce the observed dynamics of the soil water content in the uppermost 30 cm. However, the degree of fit depended on the year and season. The comparison of experimentally determined ST within the beech stand on the NE-slope during the growing season of 2007 with simulated transpiration did not yield a reliable statistical relationship. The simulation of water fluxes for the beech stand on the NE- and SW-slopes showed similar results for vegetation-related fluxes with both models, but different with respect to runoff and percolation flows. Overall, the higher evaporation demand on the warmer SW-slope did not lead to a significantly increased drought stress for the vegetation but was reflected mainly in decreased water loss from the system. This finding is discussed with regard to potential climate change and its impact on beech growth. © ISB 2009. Source


Harrison S.P.,Macquarie University | Morfopoulos C.,Imperial College London | Dani K.G.S.,Macquarie University | Prentice I.C.,Macquarie University | And 12 more authors.
New Phytologist | Year: 2013

Approximately 1-2% of net primary production by land plants is re-emitted to the atmosphere as isoprene and monoterpenes. These emissions play major roles in atmospheric chemistry and air pollution-climate interactions. Phenomenological models have been developed to predict their emission rates, but limited understanding of the function and regulation of these emissions has led to large uncertainties in model projections of air quality and greenhouse gas concentrations. We synthesize recent advances in diverse fields, from cell physiology to atmospheric remote sensing, and use this information to propose a simple conceptual model of volatile isoprenoid emission based on regulation of metabolism in the chloroplast. This may provide a robust foundation for scaling up emissions from the cellular to the global scale. © 2012 New Phytologist Trust. Source


Bergmann J.,Helmholtz Center for Environmental Research | Bergmann J.,University of Leipzig | Bergmann J.,Institute of Meteorology and Climate Research | Pompe S.,Helmholtz Center for Environmental Research | And 4 more authors.
Plant Ecology | Year: 2010

The application of niche-based modelling techniques to plant species has not been explored for the majority of taxa in Europe, primarily due to the lack of adequate distributional data. However, it is of crucial importance for conservation adaptation decisions to assess and quantify the likely pool of species capable of colonising a particular region under altered future climate conditions. We here present a novel method that combines the species pool concept and information about shifts in analogous multidimensional climate space. This allows us to identify regions in Europe with a current climate which is similar to that projected for future time periods in Germany. We compared the extent and spatial location of climatically analogous European regions for three projected greenhouse gas emission scenarios in Germany for the time period 2071-2080 (+2. 4°C, +3. 3°C, +4. 5°C average increase in mean annual temperature) to those of the recent past in Europe (1961-90). Across all three scenarios, European land areas which are characterised by climatic conditions analogue to those found in Germany decreased from 14% in 1961-1990 to ca. 10% in 2071-2080. All scenarios show disappearing current climate types in Germany, which can mainly be explained with a general northwards shift of climatically analogous regions. We estimated the size of the potential species pool of these analogous regions using floristic inventory data for the Iberian Peninsula as 2,354 plant species. The identified species pool in Germany indicates a change towards warmth and drought adapted southern species. About one-third of the species from the Iberian analogous regions are currently already present in Germany. Depending on the scenario used, 1,372 (+2. 4°C average change of mean annual temperature), 1,399 (+3. 3°C) and 1,444 (+4. 5°C) species currently not found in Germany, occur in Iberian regions which are climatically analogous to German 2071-80 climate types. We believe that our study presents a useful approach to illustrate and quantify the potential size and spatial distribution of a pool of species potentially colonising new areas under changing climatic conditions. © Springer Science+Business Media B.V. 2009. Source


Reisch C.,University of Regensburg | Kaiser A.J.,Institute of Meteorology and Climate Research | Horn A.,Stellenbosch University | Poschlod P.,University of Regensburg
Plant Biology | Year: 2010

We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird-pollinated and ant-dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦΦPT = 0.57) than at the local scale (Φ ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy. © 2009 German Botanical Society and The Royal Botanical Society of the Netherlands. Source


Xiao J.,Purdue University | Zhuang Q.,Purdue University | Law B.E.,Oregon State University | Chen J.,University of Toledo | And 37 more authors.
Remote Sensing of Environment | Year: 2010

The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km × 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr- 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances. © 2009 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations