Entity

Time filter

Source Type

Albuquerque, NM, United States

Sautter V.,IMPMC | Toplis M.J.,IRAP | Beck P.,Institute Of Planetologie Et Dastrophysique | Mangold N.,LPG Nantes | And 16 more authors.
Lithos | Year: 2016

Until recently, Mars was considered a basalt-covered world, but this vision is evolving thanks to new orbital, in situ and meteorite observations, in particular of rocks of the ancient Noachian period. In this contribution we summarise newly recognised compositional and mineralogical differences between older and more recent rocks, and explore the geodynamic implications of these new findings. For example the MSL rover has discovered abundant felsic rocks close to the landing site coming from the wall of Gale crater ranging from alkali basalt to trachyte. In addition, the recently discovered Martian regolith breccia NWA 7034 (and paired samples) contain many coarse-grained noritic-monzonitic clasts demonstrably Noachian in age, and even some clasts that plot in the mugearite field. Olivine is also conspicuously lacking in these ancient samples, in contrast to later Hesperian rocks. The alkali-suite requires low-degree melting of the Martian mantle at low pressure, whereas the later Hesperian magmatism would appear to be produced by higher mantle temperatures. Various scenarios are proposed to explain these observations, including different styles of magmatic activity (i.e. passive upwelling vs. hotspots). A second petrological suite of increasing interest involves quartzo-feldspathic materials that were first inferred from orbit, in local patches in the southern highlands and in the lower units of Valles Marineris. However, identification of felsic rocks from orbit is limited by the low detectability of feldspar in the near infrared. On the other hand, the MSL rover has described the texture, mineralogy and composition of felsic rocks in Gale crater that are granodiorite-like samples akin to terrestrial TTG (Tonalite-Trondhjemite-Granodiorite suites). These observations, and the low average density of the highlands crust, suggest the early formation of 'continental' crust on Mars, although the details of the geodynamic scenario and the importance of volatiles in their generation are aspects that require further work. © 2016 Elsevier B.V.


Yingst R.A.,Planetary Science Institute | Cropper K.,Planetary Science Institute | Gupta S.,Imperial College London | Kah L.C.,University of Tennessee at Knoxville | And 10 more authors.
Icarus | Year: 2016

We combine the results of orbitally-derived morphologic and thermal inertia data with in situ observations of abundance, size, morphologic characteristics, and distribution of pebble- to cobble-sized clasts along the Curiosity rover traverse. Our goals are to characterize rock sources and transport history, and improve our ability to predict upcoming terrain. There are ten clast types, with nine types interpreted as sedimentary rocks. Only Type 3 clasts had morphologies indicative of significant wear through transport; thus, most clast types are indicative of nearby outcrops or prior presence of laterally extensive sedimentary rock layers, consistent with the erosional landscape. A minor component may reflect impact delivery of more distant material. Types 1 and 4 are heavily-cemented sandstones, likely associated with a "caprock" layer. Types 5 and 6 (and possibly 7) are pebble-rich sandstones, with varying amounts of cement leading to varying susceptibility to erosion/wear. Type 3 clasts are rounded pebbles likely transported and deposited alluvially, then worn out of pebbly sandstone/conglomerate. Types 9 and 10 are poorly-sorted sandstones, with Type 9 representing fragments of Square Top-type layers, and Type 10 deriving from basal or other Mt. Sharp layers. Types 2, 8 and 9 are considered exotics.There are few clear links between clast type and terrain surface roughness (particularly in identifying terrain that is challenging for the rover to navigate). Orbital data may provide a reasonable prediction of certain end-member terrains but the complex interplay between variables that contribute to surface characteristics makes discriminating between terrain types from orbital data problematic. Prediction would likely be improved through higher-resolution thermal inertia data. © 2016 The Authors.


Newsom H.E.,Institute of Meteoritics | Mangold N.,CNRS Nantes Laboratory of Planetology and Geodynamics | Kah L.C.,University of Tennessee at Knoxville | Williams J.M.,Institute of Meteoritics | And 18 more authors.
Icarus | Year: 2015

Impact processes at all scales have been involved in the formation and subsequent evolution of Gale crater. Small impact craters in the vicinity of the Curiosity MSL landing site and rover traverse during the 364 Sols after landing have been studied both from orbit and the surface. Evidence for the effect of impacts on basement outcrops may include loose blocks of sandstone and conglomerate, and disrupted (fractured) sedimentary layers, which are not obviously displaced by erosion. Impact ejecta blankets are likely to be present, but in the absence of distinct glass or impact melt phases are difficult to distinguish from sedimentary/volcaniclastic breccia and conglomerate deposits. The occurrence of individual blocks with diverse petrological characteristics, including igneous textures, have been identified across the surface of Bradbury Rise, and some of these blocks may represent distal ejecta from larger craters in the vicinity of Gale. Distal ejecta may also occur in the form of impact spherules identified in the sediments and drift material. Possible examples of impactites in the form of shatter cones, shocked rocks, and ropy textured fragments of materials that may have been molten have been observed, but cannot be uniquely confirmed. Modification by aeolian processes of craters smaller than 40. m in diameter observed in this study, are indicated by erosion of crater rims, and infill of craters with aeolian and airfall dust deposits. Estimates for resurfacing suggest that craters less than 15. m in diameter may represent steady state between production and destruction. The smallest candidate impact crater observed is ~0.6. m in diameter. The observed crater record and other data are consistent with a resurfacing rate of the order of 10. mm/Myr; considerably greater than the rate from impact cratering alone, but remarkably lower than terrestrial erosion rates. © 2014 Elsevier Inc.


Sautter V.,IMPMC | Toplis M.J.,IRAP | Wiens R.C.,Los Alamos National Laboratory | Cousin A.,IRAP | And 21 more authors.
Nature Geoscience | Year: 2015

Understanding of the geologic evolution of Mars has been greatly improved by recent orbital, in situ and meteorite data, but insights into the earliest period of Martian magmatism (4.1 to 3.7 billion years ago) remain scarce. The landing site of NASA's Curiosity rover, Gale crater, which formed 3.61 billion years ago within older terrain, provides a window into this earliest igneous history. Along its traverse, Curiosity has discovered light-toned rocks that contrast with basaltic samples found in younger regions. Here we present geochemical data and images of 22 specimens analysed by Curiosity that demonstrate that these light-toned materials are feldspar-rich magmatic rocks. The rocks belong to two distinct geochemical types: alkaline compositions containing up to 67 wt% SiO 2 and 14 wt% total alkalis (Na 2 O + K 2 O) with fine-grained to porphyritic textures on the one hand, and coarser-grained textures consistent with quartz diorite and granodiorite on the other hand. Our analysis reveals unexpected magmatic diversity and the widespread presence of silica- and feldspar-rich materials in the vicinity of the landing site at Gale crater. Combined with the identification of feldspar-rich rocks elsewhere and the low average density of the crust in the Martian southern hemisphere, we conclude that silica-rich magmatic rocks may constitute a significant fraction of ancient Martian crust and may be analogous to the earliest continental crust on Earth. © 2015 Macmillan Publishers Limited.


Schroder S.,CNRS Institute for research in astrophysics and planetology | Meslin P.-Y.,CNRS Institute for research in astrophysics and planetology | Gasnault O.,CNRS Institute for research in astrophysics and planetology | Maurice S.,CNRS Institute for research in astrophysics and planetology | And 15 more authors.
Icarus | Year: 2015

One of the main advantages of ChemCam's LIBS (Laser-Induced Breakdown Spectroscopy) instrument onboard the Curiosity rover is its potential to detect light elements such as hydrogen at fine scales, which has never been achieved on Mars. Hydrogen lines are detected in most of the data obtained within the first 320 sols of the mission at Gale crater, Mars. This work is a description of the hydrogen signal and its variability in the ChemCam LIBS spectra; it discusses the challenges of qualitative and quantitative analysis. Data acquisition and processing steps are investigated and optimized for the detection of hydrogen on Mars. Subtraction of an appropriate dark spectrum and the deconvolution of the superimposed emission of carbon from the low-pressure CO2-dominated atmosphere are particularly important. Because the intensities of hydrogen are also affected by matrix effects, the hydrogen signal was investigated within groups of targets sharing common chemical features and similar matrices. The different groups cover a variety of rock and soil compositions encountered along the traverse (calcium sulfate veins, mafic soils, felsic, Mg-rich and Fe-rich rocks) including data from both drill holes and their tailings. Almost all these targets were found to be hydrated to variable extents. Soils have systematically higher hydrogen signals than rocks and pebbles, probably as a result of their alteration. The results from rocks suggest that various alteration processes leading to their hydration have taken place, which is consistent with the fluvial lacustrine context, the diagenetic features, and the mineralogy observed by Curiosity in Yellowknife Bay. © 2014 Elsevier Inc..

Discover hidden collaborations