Time filter

Source Type

Bennett P.,University of Swansea | Phelps C.,University of Swansea | Hilgart J.,University of Cardiff | Hood K.,University of Cardiff | And 2 more authors.
Psycho-Oncology | Year: 2012

Objective To gain an 'in-depth' understanding of patients' concerns and their related coping strategies during the genetic risk assessment process. Methods Participants were the 'usual care' arm of a trial of a coping intervention targeted at men and women undergoing assessment of genetic risk for familial cancer. Participants completed questionnaires measuring the degree to which they experienced up to 11 concerns and which of 8 coping strategies they used to respond to each of them at entry into the programme and 1 month subsequently (before they received their risk information). Findings A majority of participants were at least 'quite worried' about all the identified concerns, although the levels of concern fell over the waiting period. Participants used several strategies in response to their varying concerns - although a primary coping strategy for each concern was identifiable. The emotion-focused strategies of acceptance and positive appraisal were generally used in response to concerns they could not change, and seeking social support was used primarily to gain information, but not emotional support from their family. Cluster analysis identified three unique clusters of coping responses. Conclusions Genetic risk assessment comprises a number of different stressors each of which is coped with using different strategies. Copyright © 2011 John Wiley & Sons, Ltd.

Writzl K.,Institute of Medical Genetics
American Journal of Medical Genetics, Part A | Year: 2013

The chromosome 6p21.3 microdeletion phenotype was recently identified through array comparative genomic hybridization. The main features are developmental delay with severe speech impairment, seizures, and behavioral abnormalities. Three patients have been reported with deletion sizes ranging from 100 to 800kb. We report on a 9-year-old boy with an apparently de novo, 50kb deletion, and global developmental delay, severe speech impairment, and generalized epilepsy well-controlled by medication. There were four genes identified in this deletion, of which SYNGAP1 is considered to be responsible for speech impairment and epilepsy. We compared the clinical features of this patient with previously reported patients with 6p21.3 and patients with SYNGAP1 mutations. © 2013 Wiley Periodicals, Inc.

Hoffmann K.,Institute of Medical Genetics | Heller R.,University of Cologne
Best Practice and Research: Clinical Endocrinology and Metabolism | Year: 2011

Normally, one inherits one chromosome of each pair from one parent and the second chromosome from the other parent. Uniparental disomy (UPD) describes the inheritance of both homologues of a chromosome pair from the same parent. The biological basis of UPD syndromes is disturbed genomic imprinting. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Phenotypes range from unapparent to unmasking of an autosomal-recessive disease to presentation as a syndromic imprinting disorder. Whilst paternal UPD(7) is clinically unapparent, maternal UPD(7) is one of several causes of Silver-Russell syndrome. Presentation of paternal UPD(14) ("Kagami syndrome") is a thoracic dysplasia syndrome with mental retardation and limited survival. Findings in maternal UPD(14) ("Temple") syndrome show an age-dependent overlap with the well-known maternal UPD(15) (Prader-Willi) syndrome and are dominated by initial failure to thrive followed by obesity, learning difficulties and precocious puberty. Diagnostic strategies to tackle the genetic heterogeneity of UPD(7) and UPD(14) syndromes will be explained. Management issues in UPD(7) and UPD(14) patients will be discussed, and finally areas requiring further research will be outlined. © 2010 Elsevier Ltd. All rights reserved.

Lattante S.,University Pierre and Marie Curie | Lattante S.,French National Center for Scientific Research | Lattante S.,Institute of Medical Genetics | Ciura S.,University Pierre and Marie Curie | And 2 more authors.
Trends in Genetics | Year: 2015

Several genetic causes have been recently described for neurological diseases, increasing our knowledge of the common pathological mechanisms involved in these disorders. Mutation analysis has shown common causative factors for two major neurodegenerative disorders, ALS and FTD. Shared pathological and genetic markers as well as common neurological signs between these diseases have given rise to the notion of an ALS/FTD spectrum. This overlap among genetic factors causing ALS/FTD and the coincidence of mutated alleles (including causative, risk and modifier variants) have given rise to the notion of an oligogenic model of disease. In this review we summarize major advances in the elucidation of novel genetic factors in these diseases which have led to a better understanding of the common pathogenic factors leading to neurodegeneration. © 2015 Elsevier Ltd.

Michelson M.,Institute of Medical Genetics
American journal of medical genetics. Part A | Year: 2012

Interstitial deletions of the long arm of chromosome 6 are rare. Clinically, this is a recognizable microdeletion syndrome associated with intellectual disability (ID), acquired microcephaly, typical dysmorphic features, structural anomalies of the brain, and nonspecific multiple organ anomalies. Most of the reported cases have cytogenetically visible interstitial deletions or subtelomeric microdeletions. We report on a boy with global developmental delay, distinct dysmorphic features, dysgenesis of the corpus callosum, limb anomalies, and genital hypoplasia who has a small interstitial deletion of the long arm of chromosome 6 detected by comparative genomic hybridization (CGH). The deleted region spans around 1 Mb of DNA and contains only two coding genes, ARID1B and ZDHHC14. To the best of our knowledge, this case represents the typical phenotype with the smallest deletion reported so far. We discuss the possible role of these genes in the phenotypic manifestations. Copyright © 2012 Wiley Periodicals, Inc.

Discover hidden collaborations