Sainte-Foy-lès-Lyon, France
Sainte-Foy-lès-Lyon, France

Time filter

Source Type

Lanoue V.,The Interdisciplinary Center | Lanoue V.,French National Center for Scientific Research | Lanoue V.,French Institute of Health and Medical Research | Lanoue V.,Research University | And 26 more authors.
Molecular Psychiatry | Year: 2013

Adhesion-G protein-coupled receptors (GPCRs) are a poorly studied subgroup of the GPCRs, which have diverse biological roles and are major targets for therapeutic intervention. Among them, the Brain Angiogenesis Inhibitor (BAI) family has been linked to several psychiatric disorders, but despite their very high neuronal expression, the function of these receptors in the central nervous system has barely been analyzed. Our results, obtained using expression knockdown and overexpression experiments, reveal that the BAI3 receptor controls dendritic arborization growth and branching in cultured neurons. This role is confirmed in Purkinje cells in vivo using specific expression of a deficient BAI3 protein in transgenic mice, as well as lentivirus driven knockdown of BAI3 expression. Regulation of dendrite morphogenesis by BAI3 involves activation of the RhoGTPase Rac1 and the binding to a functional ELMO1, a critical Rac1 regulator. Thus, activation of the BAI3 signaling pathway could lead to direct reorganization of the actin cytoskeleton through RhoGTPase signaling in neurons. Given the direct link between RhoGTPase/actin signaling pathways, neuronal morphogenesis and psychiatric disorders, our mechanistic data show the importance of further studying the role of the BAI adhesion-GPCRs to understand the pathophysiology of such brain diseases. © 2013 Macmillan Publishers Limited.

Ebel P.,University of Bonn | Vom Dorp K.,University of Bonn | Petrasch-Parwez E.,Ruhr University Bochum | Zlomuzica A.,Ruhr University Bochum | And 14 more authors.
Journal of Biological Chemistry | Year: 2013

Background: Ceramide synthases N-acylate (dihydro-)sphingosine to (dihydro-)ceramide in mammals. Results: Enzymatically inactive ceramide synthase 6 in mice (CerS6KO) results in an altered sphingolipid metabolism and behavioral abnormalities. Conclusion: Catalytically active CerS6 is necessary to maintain sphingolipid homeostasis in mice. Significance: The CerS6KO mouse reveals for the first time the metabolic and physiological consequences of CerS6 inactivation. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

Sherrard R.M.,University Pierre and Marie Curie | Letellier M.,University Pierre and Marie Curie | Lohof A.M.,University Pierre and Marie Curie | Mariani J.,University Pierre and Marie Curie | Mariani J.,Institute Of La Longevite
Cerebellum | Year: 2013

The assembly of neural circuits involves multiple sequential steps, in particular the formation and maturation of synaptic connections. This often prolonged process involves several stages including the appropriate morphological and physiological maturation of each synaptic partner as well as their mutual interaction in order to ensure correct cellular and subcellular targeting. Understanding the processes involved becomes critical if neural circuits are to be appropriately reassembled following lesion, atrophy or neurodegeneration. We study the climbing fibre to Purkinje cell synapse as an example of a neural circuit which undergoes initial synaptic formation, selective stabilisation and elimination of redundant connections, in order to better understand the relative roles of each synaptic partner in the process of synaptogenesis and post-lesion synapse reformation. In particular, we are interested in the molecules which may underlie these processes. Here, we present data showing that the maturational state of both the target Purkinje cell and the climbing fibre axon influence their capacity for synapse formation. The climbing fibre retains some ability to recapitulate developmental processes irrespective of its maturational state. In contrast, the experience of synaptic formation and selective stabilisation/elimination permanently changes the Purkinje cell so that it cannot be repeated. Thus, if the climbing fibre-Purkinje cell synapse is recreated after the period of normal maturation, the process of synaptic competition, involving the gradual weakening of one climbing fibre synapse and stabilisation of another, no longer takes place. Moreover, we show that these processes of synaptic competition can only proceed during a specific developmental phase. To understand why these changes occur, we have investigated the role of molecules involved in the development of the olivocerebellar path and show that brain-derived neurotrophic factor, through activation of its receptor TrkB, as well as polysialated neural cell adhesion molecule and the transcription factor RORα regulate these processes. © 2013 Springer Science+Business Media New York.

Zanjani H.S.,French National Center for Scientific Research | Zanjani H.S.,University Pierre and Marie Curie | Lohof A.M.,French National Center for Scientific Research | Lohof A.M.,University Pierre and Marie Curie | And 7 more authors.
Cerebellum | Year: 2013

Recent studies using both dissociated and organotypic cell cultures have shown that heterozygous Lurcher (Lc/+) Purkinje cells (PCs) grown in vitro share many of the same survival and morphological characteristics as Lc/+ PCs in vivo. We have used this established tissue culture system as a valuable model for studying cell death mechanisms in a relatively simple system where neurodegeneration is induced by a constitutive cation leak mediated by the Lurcher mutation in the δ2 glutamate receptor (GluRδ2). In this study, Ca++ imaging and immunocytochemistry studies indicate that intracellular levels of Ca++ are chronically increased in Lc/+ PCs and the concentration and/or distribution of the conventional PKCγ isoform is altered in degenerating Lc/+ PCs. To begin to characterize the molecular mechanisms that regulate Lc/+ PC death, the contributions of conventional PKC pathways and of two MAP kinase family members, JNK and p38, were examined in slice cultures from wild-type and Lc/+ mutant mouse cerebellum. Cerebellar slice cultures from P0 pups were treated with either a conventional PKC inhibitor, a JNK inhibitor, or a p38 inhibitor either from 0 to 14 or 7 to 14 DIV. Treatment with either of the three inhibitors from 0 DIV significantly increased wild type and Lc/+ PC survival through 14 DIV, but only Lc/+ PC survival was significantly increased following treatments from 7 to 14 DIV. The results suggest that multiple PC death pathways are induced by the physical trauma of making organotypic slice cultures, naturally-occurring postnatal cell death, and the GluRδ2 Lc mutation. © 2012 Springer Science+Business Media New York.

McFarland R.,University of Maryland Baltimore County | Zanjani H.S.,University Pierre and Marie Curie | Mariani J.,University Pierre and Marie Curie | Mariani J.,Institute Of La Longevite | Vogel M.W.,University of Maryland Baltimore County
International Journal of Cell Biology | Year: 2014

A common assumption of excitotoxic mechanisms in the nervous system is that the ionic imbalance resulting from overstimulation of glutamate receptors and increased Na+ and Ca++ influx overwhelms cellular energy metabolic systems leading to cell death. The goal of this study was to examine how a chronic Na+ channel leak current in developing Purkinje cells in the heterozygous Lurcher mutant (+/Lc) affects the expression and distribution of the α3 subunit of the Na+/K+ ATPase pump, a key component of the homeostasis system that maintains ionic equilibrium in neurons. The expression pattern of the catalytic α3 Na +/K+ ATPase subunit was analyzed by immunohistochemistry, histochemistry, and Western Blots in wild type (WT) and +/Lc cerebella at postnatal days P10, P15, and P25 to determine if there are changes in the distribution of active Na+/K+ ATPase subunits in degenerating Purkinje cells. The results suggest that the expression of the catalytic α3 subunit is altered in chronically depolarized +/Lc Purkinje cells, although the density of active Na+/K+ ATPase pumps is not significantly altered compared with WT in the cerebellar cortex at P15, and then declines from P15 to P25 in the +/Lc cerebellum as the +/Lc Purkinje cells degenerate. © 2014 Rebecca McFarland et al.

Zanjani H.S.,Paris-Sorbonne University | Zanjani H.S.,French National Center for Scientific Research | Vogel M.W.,University of Maryland Baltimore County | Mariani J.,Paris-Sorbonne University | And 2 more authors.
Cerebellum | Year: 2015

Recent studies have found that in the cerebellum, the δ2 glutamate receptor (GluRδ2) plays a key role in regulating the differentiation of parallel fiber-Purkinje synapses and mediating key physiological functions in the granule cell-Purkinje cell circuit. In the hotfoot mutant or GluRδ2 knockout mice, the absence of GluRδ2 expression results in impaired motor-related tasks, ataxia, and disruption of long-term depression at parallel fiber-Purkinje cell synapses. The goal of this study was to determine the long-term consequences of deletion of GluRδ2 expression in the hotfoot mutant (GluRδ2ho/ho) on Purkinje and granule cell survival and Purkinje cell dendritic differentiation. Quantitative estimates of Purkinje and granule cell numbers in 3-, 12-, and 20-month-old hotfoot mutants and wild-type controls showed that Purkinje cell numbers are within control values at 3 and 12 months in the hotfoot mutant but reduced by 20 % at 20 months compared with controls. In contrast, the number of granule cells is significantly reduced from 3 months onwards in GluRδ2ho/ho mutant mice compared to wild-type controls. Although the overall structure of Purkinje cell dendrites does not appear to be altered, there is a significant 27 % reduction in the cross-sectional area of Purkinje cell dendritic trees in the 20-month-old GluRδ2ho/ho mutants. The interpretation of the results is that the GluRδ2 receptor plays an important role in the long-term organization of the granule-Purkinje cell circuit through its involvement in the regulation of parallel fiber-Purkinje cell synaptogenesis and in the normal functioning of this critical cerebellar circuit. © 2015 Springer Science+Business Media New York

Jolly S.,French National Center for Scientific Research | Jolly S.,University Pierre and Marie Curie | Journiac N.,French National Center for Scientific Research | Journiac N.,University Pierre and Marie Curie | And 5 more authors.
Cerebellum | Year: 2012

Studies of staggerer mice, in which retinoid-related orphan receptor-alpha (RORα) ismutated, have provided new insights into the critical functions of RORα in various physiological processes in peripheral tissues and in the brain. Staggerer mice present an ataxic phenotype caused by a massive neurodegeneration in the cerebellum. As a result, most of studies have focused on the role of RORα in the development of the cerebellum. Recent studies have expanded the role of RORα to other structures and functions in the brain. RORα was considered to be exclusively expressed in neurons in the brain. Recently, it has been shown that, in addition to its neuronal expression, RORα is expressed in glial cells and particularly in astrocytes in different brain regions. Moreover, RORα has been implicated in the regulation of some astrocyte functions such as the inflammatory function. Several reports have also presented evidence for a role of RORα in diverse pathological processes including oxidative stress-induced apoptosis and cerebral hypoxia. This review therefore focuses on the emerging roles of RORα in the brain and particularly in astrocytes. ©Springer Science+Business Media, LLC 2011.

Morellini N.,Paris-Sorbonne University | Grehl S.,Paris-Sorbonne University | Grehl S.,University of Western Australia | Tang A.,University of Western Australia | And 5 more authors.
Cerebellum | Year: 2015

Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation. © 2014, Springer Science+Business Media New York.

Loading Institute Of La Longevite collaborators
Loading Institute Of La Longevite collaborators