Time filter

Source Type

Sankt Gallen, Switzerland

Kimmel R.A.,University of Innsbruck | Onder L.,Institute of Immunobiology | Wilfinger A.,University of Innsbruck | Ellertsdottir E.,University of Basel | Meyer D.,University of Innsbruck
BMC Biology | Year: 2011

Background: Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed.Results: To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1.Conclusions: The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. © 2011 Kimmel et al; licensee BioMed Central Ltd. Source

Kindler E.,Institute of Immunobiology | Trojnar E.,German Federal Institute for Risk Assessment | Trojnar E.,Free University of Berlin | Heckel G.,University of Bern | And 3 more authors.
Infection, Genetics and Evolution | Year: 2013

Rotaviruses are a leading cause of viral acute gastroenteritis in humans and animals. Eight different rotavirus species (A-H) have been defined based on antigenicity and nucleotide sequence identities of the VP6 gene. Here, the first complete genome sequences of rotavirus F (strain 03V0568) and G (strain 03V0567) with lengths of 18,341 and 18,186. bp, respectively, are described. Both viruses have open reading frames for rotavirus proteins VP1 to VP7 and NSP1 to NSP5 located at the 11 genome segments. Nucleotide sequence identities to other rotaviruses ranged between 29.8% (NSP1 gene) and 61.7% (VP1 gene) for rotavirus F and between 29.3% (NSP1-2 gene) and 65.9% (NSP2 gene) for rotavirus G, thus confirming their classification as separate virus species. Encoded proteins revealed remarkable sequence differences among the rotavirus species. In contrast, the non-coding 5'-terminal sequences of the genome segments are highly conserved among all rotavirus species. Different 3'-terminal consensus sequences are found between rotavirus A/D/F, rotavirus C and rotavirus B/G/H. Phylogenetic analyses indicated a separation of rotaviruses in two major clades consisting of rotavirus A/C/D/F and rotavirus B/G/H. Within these clades, rotavirus F mainly clustered with rotavirus D and rotavirus G with rotavirus B. In addition, differentiation among mammalian and avian rotavirus A strains, host-specific evolution of rotavirus B and C as well as an ancient reassortment event between avian rotavirus A and D are indicated by the phylogenetic data. These results underline the high diversity of rotaviruses as a result of a complex evolutionary history. © 2012 Elsevier B.V. Source

Astarita J.L.,Harvard University | Astarita J.L.,Dana-Farber Cancer Institute | Cremasco V.,Dana-Farber Cancer Institute | Fu J.,Oklahoma Medical Research Foundation | And 22 more authors.
Nature Immunology | Year: 2015

In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here we demonstrate that podoplanin (PDPN) regulates actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, which resulted in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, which resulted in an expanded reticular network and enhanced immunity. © 2015 Nature America, Inc. Source

Hamming O.J.,University of Aarhus | Terczynska-Dyla E.,University of Aarhus | Vieyres G.,Institute of Experimental Virology | Dijkman R.,Institute of Immunobiology | And 7 more authors.
EMBO Journal | Year: 2013

The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N-linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection. © 2013 European Molecular Biology Organization. Source

Chai Q.,Institute of Immunobiology | Onder L.,Institute of Immunobiology | Scandella E.,Institute of Immunobiology | Gil-Cruz C.,Institute of Immunobiology | And 11 more authors.
Immunity | Year: 2013

The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although Tcell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in Tcell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic Tcell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection. •Novel transgenic mouse model that targets FRCs in adult lymph nodes•FRC-specific ablation of the LTβR did not abrogate LN development•Myofibroblastic FRC precursors generate the basic infrastructure of the adult LN•LTβR-mediated FRC maturation is critical for the maintenance of immunocompentence. © 2013 Elsevier Inc. Source

Discover hidden collaborations