Time filter

Source Type

Kumar A.,Post Graduate Institute of Medical Education and Research | Taneja N.,Post Graduate Institute of Medical Education and Research | Sharma R.K.,Institute of Himalayan Bioresource and Technology | Sharma H.,Institute of Himalayan Bioresource and Technology | And 2 more authors.
Epidemiology and Infection | Year: 2014

In a first study from India, a diverse collection of 140 environmental and clinical non-O157 Shiga-toxigenic Escherichia coli strains from a large geographical area in north India was typed by multi-locus variable number tandem repeat analysis (MLVA). The distribution of major virulence genes stx1, stx2 and eae was found to be 78%, 70% and 10%, respectively; 15 isolates were enterohaemorrhagic E. Coli (stx1+/stx2+ and eae+). By MLVA analysis, 44 different alleles were obtained. Dendrogram analysis revealed 104 different genotypes and 19 MLVA-type complexes divided into two main lineages, i.e. mutton and animal stool. Human isolates presented a statistically significant greater odds ratio for clustering with mutton samples compared to animal stool isolates. Five human isolates clustered with animal stool strains suggesting that some of the human infections may be from cattle, perhaps through milk, contact or the environment. Further epidemiological studies are required to explore these sources in context with occurrence of human cases. Copyright © 2014 Cambridge University Press.


PubMed | Institute of Himalayan Bioresource and Technology, Indian National Institute of Cholera and Enteric Diseases and Post Graduate Institute of Medical Education and Research
Type: Journal Article | Journal: Epidemiology and infection | Year: 2014

In a first study from India, a diverse collection of 140 environmental and clinical non-O157 Shiga-toxigenic Escherichia coli strains from a large geographical area in north India was typed by multi-locus variable number tandem repeat analysis (MLVA). The distribution of major virulence genes stx1, stx2 and eae was found to be 78%, 70% and 10%, respectively; 15 isolates were enterohaemorrhagic E. coli (stx1 +/stx2 + and eae +). By MLVA analysis, 44 different alleles were obtained. Dendrogram analysis revealed 104 different genotypes and 19 MLVA-type complexes divided into two main lineages, i.e. mutton and animal stool. Human isolates presented a statistically significant greater odds ratio for clustering with mutton samples compared to animal stool isolates. Five human isolates clustered with animal stool strains suggesting that some of the human infections may be from cattle, perhaps through milk, contact or the environment. Further epidemiological studies are required to explore these sources in context with occurrence of human cases.


Mamta G.,Panjab University | Rahi P.,Institute of Himalayan Bioresource and Technology | Pathania V.,Institute of Himalyan Bioresource and Technology | Gulati A.,Institute of Himalayan Bioresource and Technology | And 3 more authors.
Archives of Agronomy and Soil Science | Year: 2012

This study was conducted with Aloe barbadensis in order to investigate the efficacy of four phosphate-solubilizing bacteria (PSB), Pseudomonas synxantha 10223, Burkholderia gladioli 10242, Enterobacter hormaechei 10240 and Serratia marcescens 10241 to solubilize Mussorie rock phosphate (MRP) and to evaluate its effects on growth, soluble P content and P uptake compared with control, i.e. uninoculated plants. Pot experiments were conducted in a greenhouse, in soil supplemented with MRP. Each PSB treatment showed different effects on different plant growth parameters. The maximum increase in leaf length (23.7%), total number of leaves (33.33%) and dry rind weight (69.10%) was observed in plants treated with P. synxantha 10223 compared with control. Whereas, maximum increase in root length (23.43%), fresh leaves weight (79.03%), dry gel weight (113.08%) and total gel volume (112.10%), was observed in plants treated with S. marcescens 10241 compared with uninoculated plants. Maximum increase in aloin-A content [114.92% (per g dry gel weight) and 322.32% (per plant dry gel weight)] was observed in plants treated with P. synxantha 10223 compared with control plants. Root colonization by inoculated PSB as estimated by RAPD technique showed that all PSB were able to survive in the rhizosphere of Aloe plants. © 2012 Copyright Taylor and Francis Group, LLC.


Mamta,Panjab University | Rahi P.,Institute of Himalayan Bioresource and Technology | Pathania V.,Institute of Himalayan Bioresource and Technology | Gulati A.,Institute of Himalayan Bioresource and Technology | And 3 more authors.
Applied Soil Ecology | Year: 2010

The effect of four phosphate-solubilizing bacteria (PSB), (Burkholderia gladioli 10216, Burkholderia gladioli 10217, Enterobacter aerogenes 10208 and Serratia marcescens 10238) as identified on the basis of 16S rRNA gene sequencing was evaluated on plant growth and commercially important glycosides, stevioside (ST) and rebaudioside-A (R-A) of Stevia rebaudiana in pots containing tricalcium phosphate (TCP) supplemented soil. The PSB were isolated from the rhizosphere of S. rebaudiana plants and tested for P-solubilization ability, biocompatibility, indole acetic acid (IAA) and siderophore production. In greenhouse study, treatment of either individual PSB or a consortium (of PSB) resulted in increased plant growth, ST and R-A contents. The stimulatory effect was observed with consortium treatment in plant growth parameters (shoot length, 22.5%; root length, 14.7%; leaf dry weight, 89.0%; stem dry weight, 76.3% and shoot biomass, 82.5%) and glycoside contents (ST, 150% plant-1 and R-A, 555% plant-1) as compared to the un-inoculated plants. Among individual PSB treatments, B. gladioli 10216 showed most promising response in majority of the parameters studied. The root colonization potential of PSB, assayed by RAPD technique, showed the colonization of all PSB isolates, though their extent of colonization varied. © 2010 Elsevier B.V.

Loading Institute of Himalayan Bioresource and Technology collaborators
Loading Institute of Himalayan Bioresource and Technology collaborators