Time filter

Source Type

Takem G.E.,Institute of Geologic and Mining Research IRGM | Kuitcha D.,Institute of Geologic and Mining Research IRGM | Ako A.A.,Institute of Geologic and Mining Research IRGM | Mafany G.T.,Institute of Geologic and Mining Research IRGM | And 6 more authors.
Environmental Earth Sciences | Year: 2015

The alluvial aquifer underlying the city of Douala comprises shallow Quaternary deposits where groundwater is the main source for domestic and drinking purposes. Shallow groundwater in the area show signs of acidification with average pH range of 3.8–6.8. Long-term groundwater chemistry data (1998–2013), hydrogeochemical and R mode factor analysis were used to establish the acidification process of shallow groundwater and also determine possible origin and implications for water quality and use in the area. Twenty-six groundwater sample points, three streams and three rain sample points were studied seasonally in the 2006–2008 and the 2010–2013 study periods. The data were compared with result of a study, 7 years earlier (1998–1999). The results show evidence of acidification manifested by depletion of HCO3, a decrease in the pH and increase in SO4 and NO3 concentrations of shallow groundwater. Average groundwater pH range is 3.94–7.70 (1998–1999), 3.8–6.91 (2006–2008), and 3.7–6.8 (2010–2013). Only approximately 16 % (1998–1999), 14 % (2006–2008) and 11.11 % (2010–2013) of water samples fall within the range of pH (6.5–8.5) for potable water according to WHO (1993). The alkalinity/acid neutralizing capacity of the shallow groundwater has decreased significantly coupled with increase in the number of zero alkalinities recorded in the 2010–2013. The shallow groundwater is generally undersaturated with common carbonate minerals (calcite, dolomite), therefore providing insufficient acid buffer. Principal component analysis in combination with hydrogeochemical studies revealed that four main factors are responsible for the groundwater chemistry and acidity: (1) acid atmospheric deposition, (2) anthropogenic activities (industrial effluent discharges and acid spill, (3) chemical weathering, and (4) coastal atmospheric deposition/cation exchange. In general, the shallow groundwater is not suitable for drinking and domestic purposes with respect to the low pH and elevated nitrate concentration. In view of the implications such as increase in corrosion and increased mobilization of toxic elements (e.g. Al, Pb, Cu, Zn, Mn) as well as their possible harmful effect on health, it is recommended that the causes, rate of acidification and the mobility of trace elements be investigated with more details. © 2015, Springer-Verlag Berlin Heidelberg.

Takem G.E.,University of Buea | Takem G.E.,Indian Institute of Technology Bombay | Takem G.E.,Institute of Geologic and Mining Research IRGM | Chandrasekharam D.,Indian Institute of Technology Bombay | And 2 more authors.
Environmental Earth Sciences | Year: 2010

Alluvial groundwater from springs and bore wells, used as the major source of water for drinking and other domestic purposes in the semi-urban informal settlements of Douala, Cameroon, has been studied. Six representative springs, four bore wells and two hand dug wells, situated in the Phanerozoic basin were selected, from which a total of 72 water samples were analyzed for chemical characteristics and indicators of bacterial contamination. The results showed anthropogenic pollution, evident from high concentrations of organic (up to 94. 3 mg NO 3/l nitrate) fecal coliform and fecal streptococcus detected in the springs and bore wells (with values of 2,311 and 1,500 cfu/100 ml, respectively). The pH ranged from 3.4-6.5, which is lower than the guidelines for drinking water. Groundwater samples from background upstream inland natural areas W1 and W2 had low electrical conductivity (54.2 and 74.8 μs/cm, respectively) and major ions, which increased downstream in the valleys, peaking in the more densely settled areas. An acceptable concentration of solutes was observed for the bore wells except for a single sample from B4. The bore-well sample B4 registered the highest microbial content (2,130 cfu/100 ml) and nitrate level(26 mg/l), which could be due to the bottom of this well lying just at or close to the zone of mixing between sewage and groundwater. The absence of a direct correlation between nitrate and fecal matter suggests multiple sources of contamination. The shallow alluvial aquifer consists of unconsolidated deposits of gravel, sand, silt and clay. The springs, therefore, receive direct recharge from the ground surface with limited contaminant attenuation, which leads to water quality deterioration, especially during the rainy season. This shows the urgent need to put basic service infrastructures in place. The local population should be sensitized to the importance of chlorinating and boiling drinking water to prevent health hazards. © 2009 Springer-Verlag.

Loading Institute of Geologic and Mining Research IRGM collaborators
Loading Institute of Geologic and Mining Research IRGM collaborators