Saint-André-lez-Lille, France
Saint-André-lez-Lille, France

Time filter

Source Type

PubMed | Eli Lilly and Company, Applied Genomics, Guys and St Thomas NHS Foundation Trust, Copenhagen University and 10 more.
Type: Journal Article | Journal: Human mutation | Year: 2015

Copy-number variations (CNVs) are important in the aetiology of neurodevelopmental disorders and show broad phenotypic manifestations. We compared the presence of small CNVs disrupting the ELP4-PAX6 locus in 4,092 UK individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridization, with WTCCC controls (n = 4,783). The phenotypic analysis was then extended using the DECIPHER database. We followed up association using an autism patient cohort (n = 3,143) compared with six additional control groups (n = 6,469). In the clinical discovery series, we identified eight cases with ELP4 deletions, and one with a partial duplication of ELP4 and PAX6. These cases were referred for neurological phenotypes including language impairment, developmental delay, autism, and epilepsy. Six further cases with a primary diagnosis of autism spectrum disorder (ASD) and similar secondary phenotypes were identified with ELP4 deletions, as well as another six (out of nine) with neurodevelopmental phenotypes from DECIPHER. CNVs at ELP4 were only present in 1/11,252 controls. We found a significant excess of CNVs in discovery cases compared with controls, P = 7.5 10(-3) , as well as for autism, P = 2.7 10(-3) . Our results suggest that ELP4 deletions are highly likely to be pathogenic, predisposing to a range of neurodevelopmental phenotypes from ASD to language impairment and epilepsy.


PubMed | Service de Neuropediatrie, University of Washington, St. Mary's University, Institute Of Genomique Fonctionnelle and 7 more.
Type: Journal Article | Journal: Nature genetics | Year: 2016

TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of the genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12-q13.11, which includes autism spectrum disorder (ASD). In Tshz3-null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs), and the human orthologs of these genes are strongly associated with ASD. Furthermore, mice heterozygous for Tshz3 show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings highlight essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly defined TSHZ3 deletion syndrome.


PubMed | Marseille University Hospital Center, Guys Hospital, Medical Genetics Unit, Laboratoire Biomnis and 11 more.
Type: Journal Article | Journal: European journal of human genetics : EJHG | Year: 2015

6q16 deletions have been described in patients with a Prader-Willi-like (PWS-like) phenotype. Recent studies have shown that certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16 deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei. The size of the deletion in the 14 living patients ranged from 1.73 to 7.84Mb, and the fetus had the largest deletion (14Mb). Genotype-phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype. Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1 haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to 6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the 6q16.2q16.3-deletion phenotype is discussed.


Tropeano M.,King's College London | Ahn J.W.,Guys and St Thomas NHS Foundation Trust | Dobson R.J.B.,King's College London | Breen G.,King's College London | And 12 more authors.
PLoS ONE | Year: 2013

Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49-16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus. © 2013 Tropeano et al.


PubMed | Caen University Hospital Center, CHU dAmiens, Institute Of Genetique Medicale, University of Picardie Jules Verne and 2 more.
Type: Case Reports | Journal: Annales d'endocrinologie | Year: 2015

Growth hormone deficiency affects roughly between one in 3000 and one in 4000 children with most instances of growth hormone deficiency being idiopathic. Growth hormone deficiency can also be associated with genetic diseases or chromosome abnormalities. Association of growth hormone deficiency together with hypothalamic-pituitary axis malformation and Cat-Eye syndrome is a very rare condition. We report a family with two brothers presenting with growth delay due to a growth hormone deficiency associated with a polymalformation syndrome. They both displayed pre-auricular pits and tags, imperforate anus and Duane retraction syndrome. Both parents and a third unaffected son displayed normal growth pattern. Cerebral MRI showed a hypothalamic-pituitary axis malformation in the two affected brothers. Cytogenetic studies revealed a type I small supernumerary marker chromosome derived from chromosome 22 resulting in a tetrasomy 22pter-22q11.21 characteristic of the Cat-Eye syndrome. The small supernumerary marker chromosome was present in the two affected sons and the mother in a mosaic state. Patients with short stature due to growth hormone deficiency should be evaluated for chromosomal abnormality. Family study should not be underestimated.


PubMed | University Grenoble Alpes, Grenoble University Hospital Center and Institute Of Genetique Medicale
Type: Case Reports | Journal: American journal of medical genetics. Part A | Year: 2016

Several studies have recently reported that 22q12.1 deletions encompassing the MN1 gene are associated with craniofacial anomalies. These observations are consistent with the hypothesis that MN1 haploinsufficiency may be solely responsible for craniofacial anomalies and/or cleft palate. We report here the case of a 4-year-old boy presenting with global developmental delay and craniofacial anomalies including severe maxillary protrusion and retromicrognathia. Array-CGH detected a 2.4Mb de novo deletion of chromosome 22q12.1 which did not encompass the MN1 gene thought to be the main pathological candidate in 22q12.1 deletions. This observation, combined with data from other patients from the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensemble Resources (DECIPHER), suggests that other gene(s) in the 22q12.1 region are likely involved in craniofacial anomalies and/or may contribute to the phenotypic variability observed in patients with MN1 deletion.


PubMed | Genetic Veterinary science Inc., Applied Genomics, Harvard University, The Hospital for Sick Children and 8 more.
Type: | Journal: Molecular psychiatry | Year: 2016

Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts maps could uncover functionally and clinically related genes.Molecular Psychiatry advance online publication, 31 May 2016; doi:10.1038/mp.2016.84.


Touil Y.,French Institute of Health and Medical Research | Zuliani T.,French Institute of Health and Medical Research | Wolowczuk I.,Institute Pasteur Of Lille | Kuranda K.,French Institute of Health and Medical Research | And 11 more authors.
Stem Cells | Year: 2013

Melanoma is one of the most aggressive and extremely resistant to conventional therapies neoplasms. Recently, cellular resistance was linked to the cancer stem cell phenotype, still controversial and not well-defined. In this study, we used a Rhodamine 123 (Rh123) exclusion assay to functionally identify stem-like cells in metastatic human melanomas and melanoma cell lines. We demonstrate that a small subset of Rh123-low-retention (Rh123low) cells is enriched for stem cell-like activities, including the ability to self-renew and produce nonstem Rh123high progeny and to form melanospheres, recapitulating the phenotypic profile of the parental tumor. Rh123low cells are relatively quiescent and chemoresistant. At the molecular level, we show that melanoma Rh123low cells overexpress HIF1α, pluripotency factor OCT4, and the ABCB5 marker of melanoma stem cells and downregulate the expression of Cyclin D1 and CDK4. Interestingly, a short treatment with LY294002, an inhibitor of the PI3K/AKT pathway, specifically reverts a subset of Rh123high cells to the Rh123 low phenotype, whereas treatment with inhibitors of mammalian target of rapamycin, phosphatase and tensin homolog or mitogen-activated protein kinase signaling does not. This phenotypic switching was associated with reduced levels of the HIF1α transcript and an increase in the level of phosphorylated nuclear FOXO3a psreferentially in Rh123low cells. Moreover, the Rh123low cells became less quiescent and displayed a significant increase in their melanosphere- forming ability. All the above indicates that the Rh123low melanoma stem cell pool is composed of cycling and quiescent cells and that the PI3K/AKT signaling while maintaining the quiescence of Rh123low G0 cells promotes the exit of cycling cells from the stem cell compartment. © AlphaMed Press.


Asadollahi R.,University of Zürich | Oneda B.,University of Zürich | Sheth F.,FRIGEs Institute of Human Genetics | Azzarello-Burri S.,University of Zürich | And 9 more authors.
European Journal of Human Genetics | Year: 2013

A chromosomal balanced translocation disrupting the MED13L (Mediator complex subunit13-like) gene, encoding a subunit of the Mediator complex, was previously associated with transposition of the great arteries (TGA) and intellectual disability (ID), and led to the identification of missense mutations in three patients with isolated TGA. Recently, a homozygous missense mutation in MED13L was found in two siblings with non-syndromic ID from a consanguineous family. Here, we describe for the first time, three patients with copy number changes affecting MED13L and delineate a recognizable MED13L haploinsufficiency syndrome. Using high resolution molecular karyotyping, we identified two intragenic de novo frameshift deletions, likely resulting in haploinsufficiency, in two patients with a similar phenotype of hypotonia, moderate ID, conotruncal heart defect and facial anomalies. In both, Sanger sequencing of MED13L did not reveal any pathogenic mutation and exome sequencing in one patient showed no evidence for a non-allelic second hit. A further patient with hypotonia, learning difficulties and perimembranous VSD showed a 1 Mb de novo triplication in 12q24.2, including MED13L and MAP1LC3B2. Our findings show that MED13L haploinsufficiency in contrast to the previously observed missense mutations cause a distinct syndromic phenotype. Additionally, a MED13L copy number gain results in a milder phenotype. The clinical features suggesting a neurocristopathy may be explained by animal model studies indicating involvement of the Mediator complex subunit 13 in neural crest induction. © 2013 Macmillan Publishers Limited.


PubMed | University of Edinburgh, Leiden University, University of Zürich, Clinique de Genetique Guy Fontaine and 2 more.
Type: Journal Article | Journal: Journal of medical genetics | Year: 2014

Despite abundant evidence for pathogenicity of large copy number variants (CNVs) in neurodevelopmental disorders (NDDs), the individual significance of genome-wide rare CNVs <500kb has not been well elucidated in a clinical context.By high-resolution chromosomal microarray analysis, we investigated the clinical significance of all rare non-polymorphic exonic CNVs sizing 1-500kb in a cohort of 714 patients with undiagnosed NDDs.We detected 96 rare CNVs <500kb affecting coding regions, of which 58 (60.4%) were confirmed. 6 of 14 confirmed de novo, one of two homozygous and four heterozygous inherited CNVs affected the known microdeletion regions 17q21.31, 16p11.2 and 2p21 or OMIM morbid genes (CASK, CREBBP, PAFAH1B1, SATB2; AUTS2, NRXN3, GRM8). Two further de novo CNVs affecting single genes (MED13L, CTNND2) were instrumental in delineating novel recurrent conditions. For the first time, we here report exonic deletions of CTNND2 causing low normal IQ with learning difficulties with or without autism spectrum disorder. Additionally, we discovered a homozygous out-of-frame deletion of ACOT7 associated with features comparable to the published mouse model. In total, 24.1% of the confirmed small CNVs were categorised as pathogenic or likely pathogenic (median size 130kb), 17.2% as likely benign, 3.4% represented incidental findings and 55.2% remained unclear.These results verify the diagnostic relevance of genome-wide rare CNVs <500kb, which were found pathogenic in 2% (14/714) of cases (1.1% de novo, 0.3% homozygous, 0.6% inherited) and highlight their inherent potential for discovery of new conditions.

Loading Institute Of Genetique Medicale collaborators
Loading Institute Of Genetique Medicale collaborators