Entity

Time filter

Source Type


Basile A.,University of Naples Federico II | Rigano D.,University of Naples Federico II | Loppi S.,University of Siena | Di Santi A.,The Second University of Naples | And 9 more authors.
International Journal of Molecular Sciences | Year: 2015

Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. © 2015 by the authors; licensee MDPI, Basel, Switzerland.


Sorrentino N.C.,Telethon Institute of Genetics and Medicine | D'Orsi L.,Telethon Institute of Genetics and Medicine | Sambri I.,Telethon Institute of Genetics and Medicine | Nusco E.,Telethon Institute of Genetics and Medicine | And 11 more authors.
EMBO Molecular Medicine | Year: 2013

Mucopolysaccharidoses type IIIA (MPS-IIIA) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the sulphamidase gene. Here, we used a systemic gene transfer approach to demonstrate the therapeutic efficacy of a chimeric sulphamidase, which was engineered by adding the signal peptide (sp) from the highly secreted iduronate-2-sulphatase (IDS) and the blood-brain barrier (BBB)-binding domain (BD) from the Apolipoprotein B (ApoB-BD). A single intravascular administration of AAV2/8 carrying the modified sulphamidase was performed in adult MPS-IIIA mice in order to target the liver and convert it to a factory organ for sustained systemic release of the modified sulphamidase. We showed that while the IDS sp replacement results in increased enzyme secretion, the addition of the ApoB-BD allows efficient BBB transcytosis and restoration of sulphamidase activity in the brain of treated mice. This, in turn, resulted in an overall improvement of brain pathology and recovery of a normal behavioural phenotype. Our results provide a novel feasible strategy to develop minimally invasive therapies for the treatment of brain pathology in MPS-IIIA and other neurodegenerative LSDs. →See accompanying article emmm.201302668 Gene transfer of a liver-targeted sulfamidase engineered for increased secretion and blood brain barrier permeability, effectively ameliorates overall brain pathology and behavioural phenotype in treated Mucopolysaccharidosis (MPS) type IIIA mice. © 2013.


Lepore I.,The Second University of Naples | Dell'Aversana C.,The Second University of Naples | Dell'Aversana C.,Institute of Genetics and Biophysics IGB | Pilyugin M.,University of Geneva | And 11 more authors.
PLoS ONE | Year: 2013

Over the past years BARD1 (BRCA1-associated RING domain 1) has been considered as both a BRCA1 (BReast Cancer susceptibility gene 1, early onset) interactor and tumor suppressor gene mutated in breast and ovarian cancers. Despite its role as a stable heterodimer with BRCA1, increasing evidence indicates that BARD1 also has BRCA1-independent oncogenic functions. Here, we investigate BARD1 expression and function in human acute myeloid leukemias and its modulation by epigenetic mechanism(s) and microRNAs. We show that the HDACi (histone deacetylase inhibitor) Vorinostat reduces BARD1 mRNA levels by increasing miR-19a and miR-19b expression levels. Moreover, we identify a specific BARD1 isoform, which might act as tumor diagnostic and prognostic markers. © 2013 Lepore et al.

Discover hidden collaborations