Seodaemun gu, South Korea
Seodaemun gu, South Korea

Time filter

Source Type

Choi H.,Institute of Genetic Science | Choi H.,Yonsei University | Lee H.,Institute of Genetic Science | Lee H.,Yonsei University | And 14 more authors.
Cell Death and Differentiation | Year: 2014

Mouse 3T3-L1 preadipocytes differentiate into adipocytes when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin. Although mechanisms of adipogenesis, including transcriptional cascades, are understood, it is still unclear how clonally expanded cells eventually enter the terminal differentiation program. From gene expression profile studies, we identified G0/G1 switch gene 2 (G0s2) as a novel regulator of adipogenesis. The gene was found to be expressed at a higher level in white and brown adipose tissues, and it was induced in 3T3-L1 cells by hormonal treatment. Importantly, G0s2 expression was closely associated with the transition from mitotic clonal expansion to terminal differentiation. Knockdown of G0s2 expression with siRNA inhibited adipocyte differentiation, whereas constitutive overexpression of G0s2 accelerated differentiation of preadipocytes to mature adipocytes. Expression of G0s2 was found to be regulated by peroxisome proliferator-activated receptor γ (PPARγ), which is a well-known regulator of adipocyte differentiation. Absence of either PPARγ or G0s2 expression resulted in apoptotic pathway activation before terminal differentiation. To determine whether G0s2 has a role in vivo, G0s2-knockout mice were generated. The knockout mice were normal in appearance, but they had less adipose mass than wild-type littermates. Mouse embryonic fibroblast cells from G0s2-deficient mice exhibited impaired adipogenesis and contained unusually small intracellular lipid droplets, suggesting that G0s2 has a role in lipid droplet formation. Our studies demonstrate that G0s2 has an important role in adipogenesis and accumulation of triacylglycerol. © 2014 Macmillan Publishers Limited All rights reserved.


PubMed | Yonsei University and Institute of Genetic Science
Type: Journal Article | Journal: Journal of lifestyle medicine | Year: 2015

Insulin resistance is a major factor in the development of metabolic syndrome and is associated with central obesity and glucose intolerance. Resveratrol, a polyphenol found in fruits, has been shown to improve metabolic conditions. Although it has been widely studied how resveratrol affects metabolism, little is known about how resveratrol regulates lipogenesis with insulin signaling in 3T3-L1 adipocytes.We treated differentiated 3T3-L1 adipocytes with resveratrol to observe whether resveratrol is effective at reducing lipid accumulation.Resveratrol treatment after mitotic clonal expansion resulted in decreased lipid accumulation accompanied by reduced fatty acid synthase expression. Decreased glucose uptake was observed with inhibited GLUT4 translocation in cells treated with 100 M resveratrol, suggesting that high doses of resveratrol block insulin signaling in adipocytes. Insulin-stimulated Akt phosphorylation is also dose-dependently reduced with resveratrol treatment. Interestingly, Akt phosphorylation is upregulated when cells are treated with long-term low doses of resveratrol, suggesting that only low doses of resveratrol improve metabolic conditions.High doses of resveratrol block the insulin signaling pathway, thereby reducing glucose uptake and lipid accumulation in vitro. The results also provide information about in vivo administration dosages and may explain the discrepancy between in vitro and in vivo effects of resveratrol.

Loading Institute of Genetic Science collaborators
Loading Institute of Genetic Science collaborators