Time filter

Source Type

Fischer A.,University of Kiel | Schmid B.,University of Kiel | Ellinghaus D.,University of Kiel | Nothnagel M.,University of Kiel | And 20 more authors.
American Journal of Respiratory and Critical Care Medicine

Rationale: Sarcoidosis is a complex inflammatory disease with a heterogeneous clinical picture. Among others, an acute and chronic clinical course can be distinguished, for which specific genetic risk factors are known. Objectives: To identify additional risk loci for sarcoidosis and its acute and chronic subforms, we analyzed imputed data from a genomewide association scan for these phenotypes. Methods: After quality control, the genome-wide association scan comprised nearly 1.3 million imputed single-nucleotide polymorphisms based on an Affymetrix 6.0 Gene Chip dataset of 564 German sarcoidosis cases, including 176 acute and 354 chronic cases and 1,575 control subjects. Measurements and Main Results:We identified chromosome 11q13.1 (rs479777) as a novel locus influencing susceptibility to sarcoidosis with genome-wide significance. The marker was significantly associated in three distinct German case-control populations and in an additional German family sample with odds ratios ranging from 0.67 to 0.77. This finding was further replicated in two independent European case-control populations from the Czech Republic (odds ratio, 0.75) and from Sweden (odds ratio, 0.79). In a meta-analysis of the included European case-control samples the marker yielded a P value of 2.68 3 10-18. The locus was previously reported to be associated with Crohn disease, psoriasis, alopecia areata, and leprosy. For sarcoidosis, fine-mapping and expression analysis suggest KCNK4, PRDX5, PCLB3, and most promising CCDC88B as candidates for the underlying risk gene in the associated region. Conclusions: This study provides striking evidence for association of chromosome 11q13.1 with sarcoidosis in Europeans, and thus identified a further genetic risk locus sharedby sarcoidosis, Crohndisease and psoriasis. Copyright © 2012 by the American Thoracic Society. Source

Zech M.,Klinikum rechts der IsarTechnical University MunchenMunich Germany | Castrop F.,Neurologische Klinik und Poliklinik | Schormair B.,Klinikum rechts der IsarTechnical Universityt MunchenMunich Germany | Jochim A.,Neurologische Klinik und Poliklinik | And 10 more authors.
Movement Disorders

Recessive DYT16 dystonia associated with mutations in PRKRA has until now been reported only in seven Brazilian patients. The aim of this study was to elucidate the genetic cause underlying disease in a Polish family with autosomal-recessive, early-onset generalized dystonia and slight parkinsonism, and to explore further the role of PRKRA in a dystonia series of European ancestry. We employed whole-exome sequencing in two affected siblings of the Polish family and filtered for rare homozygous and compound heterozygous variants shared by both exomes. Validation of the identified variants as well as homozygosity screening and copy number variation analysis was carried out in the two affected individuals and their healthy siblings. PRKRA was analyzed in 339 German patients with various forms of dystonia and 376 population-based controls by direct sequencing or high-resolution melting. The previously described homozygous p.Pro222Leu mutation in PRKRA was found to segregate with the disease in the studied family, contained in a 1.2 Mb homozygous region identical by state with all Brazilian patients in chromosome 2q31.2. The clinical presentation with young-onset, progressive generalized dystonia and mild parkinsonism resembled the phenotype of the original DYT16 cases. PRKRA mutational screening in additional dystonia samples revealed three novel heterozygous changes (p.Thr34Ser, p.Asn102Ser, c.-14A>G), each in a single subject with focal/segmental dystonia. Our study provides the first independent replication of the DYT16 locus at 2q31.2 and strongly confirms the causal contribution of the PRKRA gene to DYT16. Our data suggest worldwide involvement of PRKRA in dystonia. © 2014 International Parkinson and Movement Disorder Society. Source

Zeller T.,University of Hamburg | Zeller T.,German Center for Cardiovascular Research e.V. | Zeller T.,Ludwig Maximilians University of Munich | Haase T.,University of Hamburg | And 40 more authors.
Circulation: Cardiovascular Genetics

Background-Interleukin-18 (IL-18) is a pleiotropic cytokine centrally involved in the cytokine cascade with complex immunomodulatory functions in innate and acquired immunity. Circulating IL-18 concentrations are associated with type 2 diabetes mellitus, cardiovascular events, and diverse inflammatory and autoimmune disorders. Methods and Results-To identify causal variants affecting circulating IL-18 concentrations, we applied various omics and molecular biology approaches. By genome-wide association study, we confirmed association of IL-18 levels with a single nucleotide polymorphism in the untranslated exon 2 of the inflammasome component NLRC4 (NLR family, caspase recruitment domain-containing 4) gene on chromosome 2 (rs385076; P=2.4×10-45). Subsequent molecular analyses by gene expression analysis and reporter gene assays indicated an effect of rs385076 on NLRC4 expression and differential isoform usage by modulating binding of the transcription factor PU.1. Conclusions-Our study provides evidence for the functional causality of single nucleotide polymorphism rs385076 within the NLRC4 gene in relation to IL-18 activation. © 2015 American Heart Association, Inc. Source

Petersen A.-K.,Institute of Genetic Epidemiology | Zeilinger S.,Research Unit of Molecular Epidemiology | Kastenmuller G.,Institute of Bioinformatics and Systems Biology | Werner R.-M.,Institute of Bioinformatics and Systems Biology | And 20 more authors.
Human Molecular Genetics

Previously,we reported strong influences of genetic variants on metabolic phenotypes, some of them with clinical relevance. Here, we hypothesize that DNA methylation may have an important and potentially independent effect on human metabolism. Totest this hypothesis,we conducted what is to the best of our knowledge the first epigenome-wide association study (EWAS) between DNA methylation and metabolic traits (metabotypes) in human blood. We assess 649 blood metabolic traits from 1814 participants of the Kooperative Gesundheitsforschung in der Region Augsburg (KORA) population study for association with methylation of 457 004 CpG sites, determined on the Infinium Human Methylation 450 Bead Chip platform. Using the EWAS approach, we identified two types of methylome-metabotype associations. One type is driven by an underlying genetic effect; the other type is independent of genetic variation and potentially driven by common environmental and life-style-dependent factors. We report eight CpG loci atgenome-wide significance that have a genetic variant as confounder (P = 3.9 × 10-20 to 2.0 × 10-108, r2 = 0.036 to 0.221).Seven loci display CpG site-specific associations to metabotypes ,but do not exhibit any underlying genetic signals (P = 9.2 × 10-14 to 2.7 × 10-27, r2 = 0.008 to 0.107). We further identify several groups of CpG loci that associate with a same metabotype, such as 4-vinylphenol sulfate and 4-androsten-3-beta,17-beta-diol disulfate. In these cases, the association between CpG-methylation and metabotype is likely the result of a common external environmental factor, including smoking. Our study shows that analysis of EWAS with large numbers of metabolic traits in large population cohorts are, in principle, feasible. Taken together, our data suggest that DNA methylation plays an important role in regulating human metabolism. © The Author 2013. Published by Oxford University Press. Source

Pechlaner R.,Innsbruck Medical University | Willeit P.,Innsbruck Medical University | Willeit P.,University of Cambridge | Summerer M.,Molecular and Clinical Pharmacology | And 20 more authors.
Arteriosclerosis, Thrombosis, and Vascular Biology

Objective: The enzyme heme oxygenase-1 (HO-1) exerts cytoprotective effects in response to various cellular stressors. A variable number tandem repeat polymorphism in the HO-1 gene promoter region has previously been linked to cardiovascular disease. We examined this association prospectively in the general population.Approach and Results: Incidence of stroke, myocardial infarction, or vascular death was registered between 1995 and 2010 in 812 participants of the Bruneck Study aged 45 to 84 years (49.4% males). Carotid atherosclerosis progression was quantified by high-resolution ultrasound. HO-1 variable number tandem repeat length was determined by polymerase chain reaction. Subjects with 32 tandem repeats on both HO-1 alleles compared with the rest of the population (recessive trait) featured substantially increased cardiovascular disease risk (hazard ratio [95% confidence interval], 5.45 [2.39, 12.42]; P<0.0001), enhanced atherosclerosis progression (median difference in atherosclerosis score [interquartile range], 2.1 [0.8, 5.6] versus 0.0 [0.0, 2.2] mm; P=0.0012), and a trend toward higher levels of oxidized phospholipids on apolipoprotein B-100 (median oxidized phospholipids/apolipoprotein B level [interquartile range], 11364 [4160, 18330] versus 4844 [3174, 12284] relative light units; P=0.0554). Increased cardiovascular disease risk in those homozygous for 32 repeats was also detected in a pooled analysis of 7848 participants of the Bruneck, SAPHIR, and KORA prospective studies (hazard ratio [95% confidence interval], 3.26 [1.50, 7.33]; P=0.0043).Conclusions: This study found a strong association between the HO-1 variable number tandem repeat polymorphism and cardiovascular disease risk confined to subjects with a high number of repeats on both HO-1 alleles and provides evidence for accelerated atherogenesis and decreased antioxidant defense in this vascular high-risk group. © 2014 American Heart Association, Inc. Source

Discover hidden collaborations