Entity

Time filter

Source Type


Zhang X.,Institute of Genetic and Biological Development | Chen S.,Institute of Genetic and Biological Development | Sun H.,Institute of Genetic and Biological Development | Wang Y.,Institute of Genetic and Biological Development | Shao L.,Institute of Genetic and Biological Development
Agricultural Water Management | Year: 2010

Selecting more water efficient cultivars is an important way to reduce water use in a water-scarce region. The objectives of this study were to measure the grain yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) cultivars to understand the genetic gains in yield and WUE and their associated physiological and agronomic traits in Hebei province, North China Plain (NCP). Two groups of winter wheat cultivars were tested. Group 1 included 16 winter wheat cultivars that were released between 1998 and 2002 and were tested during the 2002/2003 and 2003/2004 seasons under two water regimes. Group 2 included 10 cultivars released between 1970 and 2000, and were tested during the 2005/2006 and 2006/2007 seasons under three water regimes. Results showed that WUE increased substantially from 1.0-1.2 kg m-3 for cultivars from the early 1970s to 1.4-1.5 kg m-3 for recently released cultivars. There was also a variation in yield and WUE of about 20% among Group 1 cultivars. Most of the cultivars in both groups had similar responses to water supply. WUE was greater for less irrigated treatments and maximum grain production was achieved with moderate water deficit. The genetic gains in grain yield were associated with increasing in biomass, harvest index and kernel numbers per spike for cultivars released in different years. Among the Group 1 cultivars, the ones with higher yield generally had higher WUE. No significant correlations were found between WUE and physiological traits such as ash content, chlorophyll content, or relative water content among the cultivars released recently. However, a significant relationship was found between stomatal conductance or ash contents and WUE or grain yield among the Group 2 cultivars. Relationships were apparent between WUE and date of anthesis and harvest index (P < 0.05) in Group 1. Earlier flowering cultivars tended to have higher grain yield. In Group 2, flowering date was advancing by about 4 days over the 30 years of crop breeding. The positive relationship between grain yield and WUE for all the cultivars indicated that using a higher yielding cultivar has the potential to improve WUE and thereby to save water. © 2009 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations