San Juan de la Rambla, Spain
San Juan de la Rambla, Spain

Time filter

Source Type

Perez-Fernandez V.,University of Alcalá | Gonzalez M.J.,Institute of General Organic Chemistry | Garcia M.T.,University of Alcalá | Marina M.L.,University of Alcalá
Analytica Chimica Acta | Year: 2013

A new CE method has been developed for the simultaneous separation of a group of parent phthalates. Due to the neutral character of these compounds, the addition of several bile salts as surfactants (sodium cholate (SC), sodium deoxycholate (SDC), sodium taurodeoxycholate (STDC), sodium taurocholate (STC)) to the separation buffer was explored showing the high potential of SDC as pseudostationary phase. However, the resolution of all the phthalates was not achieved when employing only this bile salt as additive, being necessary the addition of neutral cyclodextrins (CD) and organic modifiers to the separation media. The optimized cyclodextrin modified micellar electrokinetic chromatography (CD-MEKC) method consisted of the employ of a background electrolyte (BGE) containing 25. mM β-CD-100. mM SDC in a 100. mM borate buffer (pH 8.5) with a 10% (v/v) of acetonitrile, employing a voltage of 30. kV and a temperature of 25. °C. This separation medium enabled the total resolution of eight compounds and the partial resolution of two of the analytes, di-n-octyl phthalate (DNOP) and diethyl hexyl phthalate (DEHP) (Rs ~ 0.8), in only 12. min. The analytical characteristics of the developed method were studied showing their suitability for the determination of these compounds in commercial perfumes. In all the analyzed perfumes the most common phthalate was diethyl phthalate (DEP) that appeared in ten of the fifteen analyzed products. Also dimethyl phthalate (DMP), diallyl phthalate (DAP), dicyclohexyl phthalate (DCP), and di-n-pentyl phthalate (DNPP) were found in some of the analyzed samples. © 2013 Elsevier B.V.


PubMed | Institute of General Organic Chemistry, Laboratory of Dioxins, General Electric and Jaume I University
Type: Evaluation Studies | Journal: Analytical and bioanalytical chemistry | Year: 2016

A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/L to 100 pg/L for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/L; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment.


Portoles T.,Jaume I University | Sales C.,Jaume I University | Gomara B.,Institute of General Organic Chemistry | Sancho J.V.,Jaume I University | And 4 more authors.
Analytical Chemistry | Year: 2015

The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low concentration levels. © 2015 American Chemical Society.


PubMed | Institute of General Organic Chemistry and Jaume I University
Type: Evaluation Studies | Journal: Analytical chemistry | Year: 2015

The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low concentration levels.


PubMed | Medical University of Lódz, Autonomous University of Barcelona, Trinity College Dublin, Foundation Medicine and 2 more.
Type: | Journal: Frontiers in neuroscience | Year: 2016

HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimers disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, -amyloid deposits, -protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands (MTDL) based on the one molecule, multiple targets paradigm. Thus, in this context, different series of novel multifunctional molecules with antioxidant, anti-amyloid, anti-inflammatory, and metal-chelating properties able to interact with multiple enzymes of therapeutic interest in AD pathology including acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases A and B have been designed and assessed biologically. This review describes the multiple targets, the design rationale and an in-house MTDL library, bearing the N-benzylpiperidine motif present in donepezil, linked to different heterocyclic ring systems (indole, pyridine, or 8-hydroxyquinoline) with special emphasis on compound ASS234, an N-propargylindole derivative. The description of the in vitro biological properties of the compounds and discussion of the corresponding structure-activity-relationships allows us to highlight new issues for the identification of more efficient MTDL for use in AD therapy.


A multi-residue analytical method was developed for the determination of a range of flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs), emerging halogenated FRs (EFRs) and organophosphate FRs (PFRs), in food matrices. An ultrasonication and vacuum assisted extraction (UVAE), followed by a multi-stage clean-up procedure, enabled the removal of up to 1g of lipid from 2.5 g of freeze-dried food samples and significantly reduce matrix effects. UVAE achieves a waste factor (WF) of about 10%, while the WFs of classical QuEChERS methods range usually between 50 and 90%. The low WF of UVAE leads to a dramatic improvement in the sensitivity along with saving up to 90% of spiking (internal) standards. Moreover, a two-stage clean-up on Florisil and aminopropyl silica was introduced after UVAE, for an efficient removal of pigments and residual lipids, which led to cleaner extracts than normally achieved by dispersive solid phase extraction (d-SPE). In this way, the extracts could be concentrated to low volumes, e.g. <100 L and the equivalent matrix concentrations were up to 100g ww/mL. The final analysis of PFRs was performed on GC-EI-MS, while PBDEs and EFRs were measured by GC-ECNI-MS. Validation tests were performed with three food matrices (lean beef, whole chicken egg and salmon filet), obtaining acceptable recoveries (66-135%) with good repeatability (RSD 1-24%, mean 7%). Method LOQs ranged between 0.008 and 0.04 ng/g dw for PBDEs, between 0.08 and 0.20 ng/g dw for EFRs, and between 1.4 and 3.6 ng/g dw for PFRs. The method was further applied to eight types of food samples (including meat, eggs, fish, and seafood) with lipid contents ranging from 0.1 to 22%. Various FRs were detected above MLOQ levels, demonstrating the wide-range applicability of our method. To the best of our knowledge, this is the first method reported for simultaneous analysis of brominated and organophosphate FRs in food matrices.


Gomara B.,University of Stockholm | Gomara B.,Institute of General Organic Chemistry | Athanasiadou M.,University of Stockholm | Quintanilla-Lopez J.E.,Institute of General Organic Chemistry | And 2 more authors.
Environmental Science and Pollution Research | Year: 2012

Introduction Concentrations and congener profiles of polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) in placenta samples from a Madrid population (Spain) are reported. Structure dependent retentions of OH-PCBs are known to occur in both humans and wildlife, making it of interest to assess placental transfer of both parent compounds and their metabolites to the developing foetus. Results The ΣPCB concentrations found in placenta samples were in the range 943-4,331 pg/g fresh weight (f. w.), and their hydroxylated metabolites showed a 20-time lower concentration level (53-261 pg/g f. w.). The PCB profiles were surprisingly dominated by CB-52 and CB-101 accounting for more than 44% of the total PCB concentration. This is indicating a source of exposure that is not yet identified. The OH-PCB profiles were dominated by 4-OH-CB187 and 4-OH-CB146, representing >50% of the ΣOH-PCB concentration of the placenta samples. Statistical analysis of the data revealed strong correlations between the PCB congeners, among some OH-PCBs, and between OH-PCB metabolites with a meta- and para- substitution pattern. Both PCB and OH-PCB concentrations presented homogeneous distribution, what allowed the establishment of a partial least squares model that correlated the concentrations of OH-PCB with those of PCBs in placenta samples. In addition, causal correlations were observed between the concentrations of OH-PCBs and those of their corresponding PCB precursors. © 2011 Springer-Verlag.


Gulias M.,University of Santiago de Compostela | Lopez F.,Institute of General Organic Chemistry | Mascarenas J.L.,University of Santiago de Compostela
Pure and Applied Chemistry | Year: 2011

We present a compilation of methodologies developed in our laboratories to assemble polycyclic structures containing small- and medium-sized cycles, relying on the use of transition-metal-catalyzed (TMC) cycloadditions. First, we discuss the use of alkylidene - cyclopropanes (ACPs) as 3C-atom partners, in particular in their Pd-catalyzed (3 + 2) cycloadditions with alkynes, alkenes, and allenes, reactions that lead to cyclopentane-containing polycyclic products in excellent yields. Then, we present the expansion of this chemistry to a (4 + 3) annulation with conjugated dienes, and to inter- and intramolecular (3 + 2 + 2) cycloadditions using external alkenes as additional 2C-π-systems. These reactions allow the preparation of different types of polycyclic structures containing cycloheptene rings, the topology of the products depending on the use of Pd or Ni catalysts. Finally, we include our more recent discoveries on the development of (4 + 3) and (4 + 2) intramolecular cyclo additions of allenes and dienes, promoted by Pt and Au catalysts, and discuss mechanistic insights supported by experimental and density functional theory (DFT) calculations. An enantioselective version of the (4 + 2) cycloaddition with phosphoramidite Au(I) catalysts is also presented. © 2011 IUPAC.


Castro-Puyana M.,Institute of General Organic Chemistry | Herrero L.,Institute of General Organic Chemistry | Gonzalez M.J.,Institute of General Organic Chemistry | Gomara B.,Institute of General Organic Chemistry
Analytica Chimica Acta | Year: 2013

Instrumental methods based on gas chromatography coupled to mass spectrometry (GC-MS) have been developed and compared using two different MS ionisation modes, electron impact (EI) and electron capture negative ionisation (ECNI), for the fast, quantitative and simultaneous determination of polychlorinated biphenyls (PCBs) and their main metabolites (hydroxylated PCBs, OH-PCBs, and methyl sulfone PCBs, MeSO2-PCBs). Parameters affecting chromatographic separation and MS detection were evaluated in order to achieve the highest selectivity and sensitivity for both operation modes. The analytical characteristics of the developed methods were studied and compared in terms of linear range, limits of detection (LODs), limits of quantification (LOQs), and instrumental precision (repeatability and intermediate precision). Both ionisation methods showed similar precision, being relative standard deviations (RSD, %) lower than 9% and 14% for repeatability and intermediate precision, respectively. However, better LODs (from 0.01 to 0.14pg injected for the three families of congeners studied) were achieved using ECNI-MS as ionisation mode. The suitability of the developed method was demonstrated through their application to fish liver oil samples. © 2013 Elsevier B.V.


Instrumental methods based on gas chromatography coupled to mass spectrometry (GC-MS) have been developed and compared using two different MS ionisation modes, electron impact (EI) and electron capture negative ionisation (ECNI), for the fast, quantitative and simultaneous determination of polychlorinated biphenyls (PCBs) and their main metabolites (hydroxylated PCBs, OH-PCBs, and methyl sulfone PCBs, MeSO2-PCBs). Parameters affecting chromatographic separation and MS detection were evaluated in order to achieve the highest selectivity and sensitivity for both operation modes. The analytical characteristics of the developed methods were studied and compared in terms of linear range, limits of detection (LODs), limits of quantification (LOQs), and instrumental precision (repeatability and intermediate precision). Both ionisation methods showed similar precision, being relative standard deviations (RSD, %) lower than 9% and 14% for repeatability and intermediate precision, respectively. However, better LODs (from 0.01 to 0.14 pg injected for the three families of congeners studied) were achieved using ECNI-MS as ionisation mode. The suitability of the developed method was demonstrated through their application to fish liver oil samples.

Loading Institute of General Organic Chemistry collaborators
Loading Institute of General Organic Chemistry collaborators