Time filter

Source Type

Bonfig W.,TU Munich | Bonfig W.,Ludwig Maximilians University of Munich | Krude H.,Institute of Experimental Pediatric Endocrinology | Schmidt H.,Ludwig Maximilians University of Munich
European Journal of Pediatrics | Year: 2011

The LHX3 LIM-homeodomain transcription factor gene is required for normal pituitary and motoneuron development. LHX3 mutations are associated with growth hormone, prolactin, gonadotropin, and TSH deficiency; abnormal pituitary morphology; and may be accompanied with limited neck rotation and sensorineural hearing loss. We report on a boy, who presented with hypoglycemia in the newborn period. He is the second child of healthy unrelated parents. Short neck, growth hormone deficiency, and central hypothyroidism were diagnosed at a general pediatric hospital. Growth hormone and levothyroxine treatment were started, and blood sugar normalized with this treatment. On cerebral MRI, the anterior pituitary gland was hypoplastic. Sensorineural hearing loss was diagnosed by auditory testing. During follow-up, six repeatedly low morning cortisol levels (<1 μg/dl) and low ACTH levels (<10 pg/ml) were documented, so ACTH deficiency had developed over time and therefore hydrocortisone replacement was started at 1.5 years of age. Mutation analysis of the LHX3 gene revealed a homozygous stop mutation in exon 2: c.229C>T (CGA > TGA), Arg77stop (R77X). A complete loss of function is assumed with this homozygous stop mutation. We report a novel LHX3 mutation, which is associated with combined pituitary hormone deficiency including ACTH deficiency, short neck, and sensorineural hearing loss. All patients with LHX3 defects should undergo longitudinal screening for ACTH deficiency, since corticotrope function may decline over time. All patients should have auditory testing to allow for regular speech development. © 2011 Springer-Verlag. Source

Knoll N.,University of Duisburg - Essen | Jarick I.,University of Marburg | Volckmar A.-L.,University of Duisburg - Essen | Klingenspor M.,TU Munich | And 23 more authors.
PLoS ONE | Year: 2014

Heritability estimates for body mass index (BMI) variation are high. For mothers and their offspring higher BMI correlations have been described than for fathers. Variation(s) in the exclusively maternally inherited mitochondrial DNA (mtDNA) might contribute to this parental effect. Thirty-two to 40 mtDNA single nucleotide polymorphisms (SNPs) were available from genome-wide association study SNP arrays (Affymetrix 6.0). For discovery, we analyzed association in a case-control (CC) sample of 1,158 extremely obese children and adolescents and 435 lean adult controls. For independent confirmation, 7,014 population-based adults were analyzed as CC sample of n = 1,697 obese cases (BMI≥30 kg/m 2) and n = 2,373 normal weight and lean controls (BMI<25 kg/m 2). SNPs were analyzed as single SNPs and haplogroups determined by HaploGrep. Fisher's two-sided exact test was used for association testing. Moreover, the D-loop was re-sequenced (Sanger) in 192 extremely obese children and adolescents and 192 lean adult controls. Association testing of detected variants was performed using Fisher's two-sided exact test. For discovery, nominal association with obesity was found for the frequent allele G of m.8994G/A (rs28358887, p = 0.002) located in ATP6. Haplogroup W was nominally overrepresented in the controls (p = 0.039). These findings could not be confirmed independently. For two of the 252 identified D-loop variants nominal association was detected (m.16292C/T, p = 0.007, m.16189T/C, p = 0.048). Only eight controls carried the m.16292T allele, five of whom belonged to haplogroup W that was initially enriched among these controls. m.16189T/C might create an uninterrupted poly-C tract located near a regulatory element involved in replication of mtDNA. Though follow-up of some D-loop variants still is conceivable, our hypothesis of a contribution of variation in the exclusively maternally inherited mtDNA to the observed larger correlations for BMI between mothers and their offspring could not be substantiated by the findings of the present study. © 2014 Knoll et al. Source

Mhlhaus J.,Institute of Experimental Pediatric Endocrinology | Ptter C.,University of Duisburg - Essen | Brumm H.,Institute of Experimental Pediatric Endocrinology | Grallert H.,Helmholtz Center for Environmental Research | And 14 more authors.
Hormone Research in Paediatrics | Year: 2012

Background/Aims: Genome-wide association studies revealed associations of single nucleotide polymorphisms (SNPs) flanking MC4R with body mass index variability and obesity. We genotyped 28 SNPs, covering MC4R, and searched for haplotypes discriminating between obese mutation carriers and non-carriers. Methods: We analyzed all three-marker haplotype combinations of the 28 SNPs to discriminate between obese mutation carriers and non-carriers-overall and in functional categories for 25 different MC4R mutations: (a) 'like wild type', (b) 'partial loss of function', and (c) 'complete loss of function'. We checked for the possible impact of 'cryptic relatedness' by sensitivity analyses including only 1 randomly selected patient per mutation. Results: Overall analyses revealed a haplotype of 3 SNPs downstream of the MC4R discriminating between obese mutation carriers and obese non-carriers. However, sensitivity analyses showed that the finding is most likely due to cryptic relatedness. Conclusion: Given a mutation prevalence of 1-5%, the sample size of 62 obese mutation carriers with overall 25 different MC4R mutations represents a unique feature of our study. Taking MC4R as an example, we demonstrate the impact of cryptic relatedness when trying to link non-coding SNPs to functionally relevant mutations. Hence, a thorough mutation screen can currently not be guided by SNP genotyping. Copyright © 2012 S. Karger AG, Basel. Source

Zwanziger D.,University of Duisburg - Essen | Schmidt M.,University of Duisburg - Essen | Fischer J.,Institute of Experimental Pediatric Endocrinology | Kleinau G.,Institute of Experimental Pediatric Endocrinology | And 5 more authors.
Molecular and Cellular Endocrinology | Year: 2016

Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known.We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells).MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown.Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. © 2016 Elsevier Ireland Ltd. Source

Discover hidden collaborations