Institute of Experimental Botany

Olomouc, Czech Republic

Institute of Experimental Botany

Olomouc, Czech Republic

Time filter

Source Type

Lukaszewski A.J.,University of California at Riverside | Kopecky D.,Institute of Experimental Botany | Linc G.,Hungarian Academy of Sciences
Chromosoma | Year: 2012

In many species, including wheat, crossing over is distal, and the proximal regions of chromosome arms contribute little to genetic maps. This was thought to be a consequence of terminal initiation of synapsis favoring distal crossing over. However, in an inverted rye chromosome arm, the pattern of metaphase I chiasmata was also inverted, suggesting that crossover frequencies were specific to chromosome segments. Here, wheat chromosome arms 2BS and 4AL, with essentially entire arms inverted in reverse tandem duplications (rtd), were studied in the MI of meiosis. Inversion-duplication placed the recombining segments in the middle of the arms. While the overall pairing frequencies of the inverted-duplicated arms were considerably reduced relative to normal arms, chiasmata, if present, were always located in the same regions as in structurally normal arms, and relative chiasma frequencies remained the same. The frequencies of fragment or fragment + bridge configurations in AI and AII indicated that of the two tandemly arranged copies of segments in rtds, the more distal inverted segments were more likely to cross over than the segments in their original orientations. These observations show that also in wheat, relative crossover frequencies along chromosome arms are predetermined and independent of the segment location. The segments normally not licensed to cross over do not do so even when placed in seemingly most favorable positions for it. © 2011 Springer-Verlag.


Lukaszewski A.J.,University of California at Riverside | Kopecky D.,Institute of Experimental Botany
Cytogenetic and Genome Research | Year: 2010

The Ph1 locus on chromosome 5B enforces strictly bivalent pairing in polyploid wheat, but the exact mechanism of its action remains unknown. Pairing restriction involves not only wheat homoeologues and all alien introgressions but also differentiated homologues. In this study we show that chromosome 5B with its Ph1 locus also controls chromosome pairing in autotetraploid rye by apparently restricting chiasma formation between dissimilar homologues. Unlike in wheat, the effect appears to be dosage-dependent, which may be a reflection of an interaction between Ph1 and the rye chromosome pairing control system. With 2 doses of Ph1 present, chiasmate pairing was severely restricted resulting in a significantly higher number of univalents and bivalents per cell than in the controls. The restrictions imposed by Ph1 virtually eliminated MI pairing of chromosome arms polymorphic for their C-band patterns and did not appear to affect arms with similar patterns. If the polymorphism for C-bands is taken as a measure of the overall chromosome similarity/divergence, such differences were recognized and acted upon by the Ph1 locus. The fact that Ph1 operates in rye in the same fashion as in polyploid wheats suggests that it controls some basic mechanism of chromosome recognition. Copyright © 2010 S. Karger AG, Basel.


Kopecky D.,Institute of Experimental Botany | Studer B.,ETH Zurich
Biotechnology Advances | Year: 2014

Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities.In this review, we will discuss a selection of technological developments that served as main drivers to generate new insights into the structure and function of nuclear genomes. Many of these technologies were originally developed in human or animal science and are now increasingly applied in plant genomics. Our main goal is to highlight the benefits of using these technologies for forage and turf grass genome research, to discuss their potentials and limitations as well as their relevance for future applications. © 2013 Elsevier Inc.


Dolezel J.,Institute of Experimental Botany | Greilhuber J.,University of Vienna
Cytometry Part A | Year: 2010

Correct information on genome size is important in many areas of research. For a long time, scientists have been struggling to understand the reason for the huge variation in eukaryotic genome size and its biological significance. More recently, the knowledge on genome size has become important to structure genome sequencing projects as their scale and cost depend on genome size. Despite the fact that the first estimates of genome size in eukaryotes were made more than 50 years ago, we are still not quite sure about the exact genome size in practically all animal and plant species. Moreover, different estimates continue to be published for the same species. These discrepancies compromise data comparison and interpretation and point to methodological problems, which include standardization. This article assesses the current state of DNA reference standards for flow cytometry and the issues related to their calibration. Copyright © 2010 International Society for Advancement of Cytometry.


Mahelka V.,Academy of Sciences of the Czech Republic | Kopeck D.,Institute of Experimental Botany | Patova L.,Academy of Sciences of the Czech Republic
BMC Evolutionary Biology | Year: 2011

Abstract. Background: The wheat tribe Triticeae (Poaceae) is a diverse group of grasses representing a textbook example of reticulate evolution. Apart from globally important grain crops, there are also wild grasses which are of great practical value. Allohexaploid intermediate wheatgrass, Thinopyrum intermedium (2n = 6x = 42), possesses many desirable agronomic traits that make it an invaluable source of genetic material useful in wheat improvement. Although the identification of its genomic components has been the object of considerable investigation, the complete genomic constitution and its potential variability are still being unravelled. To identify the genomic constitution of this allohexaploid, four accessions of intermediate wheatgrass from its native area were analysed by sequencing of chloroplast trnL-F and partial nuclear GBSSI, and genomic in situ hybridization. Results: The results confirmed the allopolyploid origin of Thinopyrum intermedium and revealed new aspects in its genomic composition. Genomic heterogeneity suggests a more complex origin of the species than would be expected if it originated through allohexaploidy alone. While Pseudoroegneria is the most probable maternal parent of the accessions analysed, nuclear GBSSI sequences suggested the contribution of distinct lineages corresponding to the following present-day genera: Pseudoroegneria, Dasypyrum, Taeniatherum, Aegilops and Thinopyrum. Two subgenomes of the hexaploid have most probably been contributed by Pseudoroegneria and Dasypyrum, but the identity of the third subgenome remains unresolved satisfactorily. Possibly it is of hybridogenous origin, with contributions from Thinopyrum and Aegilops. Surprising diversity of GBSSI copies corresponding to a Dasypyrum-like progenitor indicates either multiple contributions from different sources close to Dasypyrum and maintenance of divergent copies or the presence of divergent paralogs, or a combination of both. Taeniatherum-like GBSSI copies are most probably pseudogenic, and the mode of their acquisition by Th. intermedium remains unclear. Conclusions: Hybridization has played a key role in the evolution of the Triticeae. Transfer of genetic material via extensive interspecific hybridization and/or introgression could have enriched the species' gene pools significantly. We have shown that the genomic heterogeneity of intermediate wheatgrass is higher than has been previously assumed, which is of particular concern to wheat breeders, who frequently use it as a source of desirable traits in wheat improvement. © 2011 Mahelka et al; licensee BioMed Central Ltd.


Vrana J.,Institute of Experimental Botany | Simkova H.,Institute of Experimental Botany | Kubalakova M.,Institute of Experimental Botany | Cihalikova J.,Institute of Experimental Botany | Dolezel J.,Institute of Experimental Botany
Methods | Year: 2012

Genome analysis in many plant species is hampered by large genome size and by sequence redundancy due to the presence of repetitive DNA and polyploidy. One solution is to reduce the sample complexity by dissecting the genomes to single chromosomes. This can be realized by flow cytometric sorting, which enables purification of chromosomes in large numbers. Coupling the chromosome sorting technology with next generation sequencing provides a targeted and cost effective way to tackle complex genomes. The methods outlined in this article describe a procedure for preparation of chromosomal DNA suitable for next-generation sequencing. © 2012 Elsevier Inc.


Mahelka V.,Academy of Sciences of the Czech Republic | Kopecky D.,Institute of Experimental Botany
Molecular Biology and Evolution | Year: 2010

Four accessions of hexaploid Elymus repens from its native Central European distribution area were analyzed using sequencing of multicopy (internal transcribed spacer, ITS) and single-copy (granule-bound starch synthase I, GBSSI) DNA in concert with genomic and fluorescent in situ hybridization (GISH and FISH) to disentangle its allopolyploid origin. Despite extensive ITS homogenization, nrDNA in E. repens allowed us to identify at least four distinct lineages. Apart from Pseudoroegneria and Hordeum, representing the major genome constituents, the presence of further unexpected alien genetic material, originating from species outside the Triticeae and close to Panicum (Paniceae) and Bromus (Bromeae), was revealed. GBSSI sequences provided information complementary to the ITS. Apart from Pseudoroegneria and Hordeum, two additional gene variants from within the Triticeae were discovered: One was Taeniatherum-like, but the other did not have a close relationship with any of the diploids sampled. GISH results were largely congruent with the sequence-based markers. GISH clearly confirmed Pseudoroegneria and Hordeum as major genome constituents and further showed the presence of a small chromosome segment corresponding to Panicum. It resided in the Hordeum subgenome and probably represents an old acquisition of a Hordeum progenitor. Spotty hybridization signals across all chromosomes after GISH with Taeniatherum and Bromus probes suggested that gene acquisition from these species is more likely due to common ancestry of the grasses or early introgression than to recent hybridization or allopolyploid origin of E. repens. Physical mapping of rDNA loci using FISH revealed that all rDNA loci except one minor were located on Pseudoroegneria-derived chromosomes, which suggests the loss of all Hordeum-derived loci but one. Because homogenization mechanisms seem to operate effectively among Pseudoroegneria-like copies in this species, incomplete ITS homogenization in our samples is probably due to an interstitial position of an individual minor rDNA locus located within the Hordeum-derived subgenome. © The Author 2010. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.


Milec Z.,Institute of Experimental Botany | Valarik M.,Institute of Experimental Botany | Bartos J.,Institute of Experimental Botany | Safar J.,Institute of Experimental Botany
Biotechnology Advances | Year: 2014

The transition from the vegetative to reproductive stage followed by inflorescence is a critical step in plant life; therefore, studies of the genes that influence flowering time have always been of great interest to scientists. Flowering is a process controlled by many genes interacting mutually in a genetic network, and several hypothesis and models of flowering have been suggested so far. Plants in temperate climatic conditions must respond mainly to changes in the day length (photoperiod) and unfavourable winter temperatures. To avoid flowering before winter, some plants exploit a specific mechanism called vernalization. This review summarises current achievements in the study of genes controlling flowering in the dicot model species thale cress (Arabidopsis thaliana), as well as in monocot model species rice (Oryza sativa) and temperate cereals such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). The control of flowering in crops is an attractive target for modern plant breeding efforts aiming to prepare locally well-adapted cultivars. The recent progress in genomics revealed the importance of minor-effect genes (QTLs) and natural allelic variation of genes for fine-tuning flowering and better cultivar adaptation. We briefly describe the up-to-date technologies and approaches that scientists may employ and we also indicate how these modern biotechnological tools and "-omics" can expand our knowledge of flowering in agronomically important crops. © 2013 Elsevier Inc.


Dolezel J.,Institute of Experimental Botany | Vrana J.,Institute of Experimental Botany | Capal P.,Institute of Experimental Botany | Kubalakova M.,Institute of Experimental Botany | And 2 more authors.
Biotechnology Advances | Year: 2014

Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics - the marriage of cytology and genomics - will make a significant contribution to the field of plant genetics. © 2013 The Authors.


Dolezel J.,Institute of Experimental Botany
Methods in molecular biology (Clifton, N.J.) | Year: 2011

Chromosome analysis and sorting using flow cytometry (flow cytogenetics) is an attractive tool for fractionating plant genomes to small parts. The reduction of complexity greatly simplifies genetics and genomics in plant species with large genomes. However, as flow cytometry requires liquid suspensions of particles, the lack of suitable protocols for preparation of solutions of intact chromosomes delayed the application of flow cytogenetics in plants. This chapter outlines a high-yielding procedure for preparation of solutions of intact mitotic chromosomes from root tips of young seedlings and for their analysis using flow cytometry and sorting. Root tips accumulated at metaphase are mildly fixed with formaldehyde, and solutions of intact chromosomes are prepared by mechanical homogenization. The advantages of the present approach include the use of seedlings, which are easy to handle, and the karyological stability of root meristems, which can be induced to high degree of metaphase synchrony. Chromosomes isolated according to this protocol have well-preserved morphology, withstand shearing forces during sorting, and their DNA is intact and suitable for a range of applications.

Loading Institute of Experimental Botany collaborators
Loading Institute of Experimental Botany collaborators