Time filter

Source Type

Banerjee I.,Jadavpur University | Marek J.,Institute of Experimental Biology | Herchel R.,Palacky University | Ali M.,Jadavpur University
Polyhedron | Year: 2010

Four azide bridged dinuclear copper(II) complexes, [Cu2(LX)2(N3)2](ClO4)2, with LX = substituted N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine, [X = H (1), OMe (2), Me (3) and Cl (4)] have been synthesized, out of which complexes 1 and 2 have been characterized structurally. In Complex 1 the two bridging azide ligands have connected the two metal centers in an end-on (EO) fashion with aSP (asymmetric Square Pyramidal) geometry and showed an weak antiferromagnetic interaction (J = -3.34 cm-1). On the contrary, in complex 2, the two metal centers have been connected in end-to-end (EE) fashion exhibiting moderately strong ferromagnetic interaction (J = +19.7 cm-1). Cyclic voltammetric studies performed on all the four complexes show a reasonably good correlations when E1/2 for CuIICuII → CuIICuIII and CuIICuIII → CuIIICuIII oxidations are plotted against σ (substituent constants) with ρ = -0.182 (R2 = 0.92) and -0.684 (R2 = 0.99) respectively. © 2009 Elsevier Ltd. All rights reserved.

Bouchal P.,Masaryk University | Struharova I.,Masaryk University | Budinska E.,Masaryk University | Sedo O.,Institute of Experimental Biology | And 4 more authors.
Biochimica et Biophysica Acta - Proteins and Proteomics | Year: 2010

The switch from aerobic to anaerobic respiration in the bacterium Paracoccus denitrificans is orchestrated by the action of three FNR-type transcription regulators FnrP, NNR and NarR, which are sensors for oxygen, nitric oxide and nitrite, respectively. In this work, we analyzed the protein composition of four strains (wild type, FnrP-, NNR- and NarR-mutant strains) grown aerobically, semiaerobically and semiaerobically in the presence of nitrate to discover the global role of FNR-family transcription regulators using proteomics, with data validation at the transcript and genome levels. Expression profiles were acquired using two-dimensional gel electrophoresis for 737 protein spots, in which 640 proteins were identified using mass spectrometry. The annotated 2-D proteome map provided the most comprehensive coverage of P. denitrificans proteome available to-date and can be accessed on-line at http://www.mpiib-berlin.mpg.de/2D-PAGE/. Our results revealed several types of regulation under the conditions tested: (1) FnrP-controlled regulation of nitrous oxide reductase, UspA and OmpW as confirmed at protein, transcript and DNA level (position of FNR boxes). (2) Proteins regulated via additional regulators, including proteins involved in NNR and NarR regulons: nitrate reductase β-subunit, TonB-dependent receptors, nitrite reductase, a TenA-type transcription regulator, and an unknown protein with an alpha/beta hydrolase fold. (3) Proteins whose expression was affected mainly by the growth condition. This group contains SSU ribosomal protein S305 / σ54 modulation protein, and two short-chain reductase-dehydrogenase proteins. © 2010 Elsevier B.V. All rights reserved.

Kaucka M.,Institute of Experimental Biology | Plevova K.,CEITEC Central European Institute of Technology | Plevova K.,University Hospital Brno and Medical Faculty | Pavlova S.,CEITEC Central European Institute of Technology | And 25 more authors.
Cancer Research | Year: 2013

The planar cell polarity (PCP) pathway is a conserved pathway that regulates cell migration and polarity in various contexts. Here we show that key PCP pathway components such as Vangl2, Celsr1, Prickle1, FZD3, FZD7, Dvl2, Dvl3, and casein kinase 1 (CK1)-e are upregulated in B lymphocytes of patients with chronic lymphocytic leukemia (CLL). Elevated levels of PCP proteins accumulate in advanced stages of the disease. Here, we show that PCP pathway is required for the migration and transendothelial invasion of CLL cells and that patients with high expression of PCP genes, FZD3, FZD7, and PRICKLE1, have a less favorable clinical prognosis. Our findings establish that the PCP pathway acts as an important regulator of CLL cell migration and invasion. PCP proteins represent an important class of molecules regulating pathogenic interaction of CLL cells with their microenvironment. © 2013 American Association for Cancer Research.

Blackburn H.D.,U.S. Department of Agriculture | Toishibekov Y.,Institute of Experimental Biology | Toishibekov M.,Institute of Experimental Biology | Welsh C.S.,U.S. Department of Agriculture | And 3 more authors.
Genetica | Year: 2011

Domestic sheep in Kazakhstan may provide an interesting source of genetic variability due to their proximity to the center of domestication and the Silk Route. Additionally, those breeds have never been compared to New World sheep populations. This report compares genetic diversity among five Kazakhstan (KZ) and 13 United States (US) sheep breeds (N = 442) using 25 microsatellite markers from the FAO panel. The KZ breeds had observed and expected measures of heterozygosity greater than 0.60 and an average number of alleles per locus of 7.8. In contrast, US sheep breeds had observed heterozygosity ranged from 0.37 to 0.62 and had an average number of alleles of 5.7. A Bayesian analysis indicated there were two primary populations (K = 2). Surprisingly, the US breeds were near evenly split between the two clusters, while all of the KZ breeds were placed in one of the two clusters. Pooling breeds within country of sample origin showed KZ and US populations to have similar levels of expected heterozygosity and the average number of alleles per locus. The results of breeds pooled within country suggest that there was no difference between countries for these diversity measures using this set of neutral markers. This finding suggests that populations' geographically isolated from centers of domestication can be more diverse than previously thought, and as a result, conservation strategies can be adjusted accordingly. Furthermore, these results suggest there may be limited need for countries to alter the protocols for trade and exchange of animal genetic resources that are in place today, since no one population has a unique set of private alleles. © 2011 Springer Science+Business Media B.V. (outside the USA).

Aliyeva-Schnorr L.,Leibniz Institute of Plant Genetics and Crop Plant Research | Beier S.,Leibniz Institute of Plant Genetics and Crop Plant Research | Karafiatova M.,Institute of Experimental Biology | Schmutzer T.,Leibniz Institute of Plant Genetics and Crop Plant Research | And 4 more authors.
Plant Journal | Year: 2015

Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape. Significance Statement To fully exploit the barley genome for crop improvement, it is necessary to better understand the relationship between physical and genetic distances. Here we used low-copy probes for fluorescence in situ hybridization to order contigs corresponding to a non-recombining genetic centromere of barley. © 2015 The Authors.

Discover hidden collaborations