Time filter

Source Type

Jang J.Y.,Institute of Environmentally Friendly Agriculture | Yang S.Y.,Institute of Environmentally Friendly Agriculture | Kim Y.C.,Institute of Environmentally Friendly Agriculture | Lee C.W.,Chonnam National University | And 3 more authors.
Journal of Agricultural and Food Chemistry | Year: 2013

The use of biosurfactants for agricultural crop protection has been gaining interest because they are generally biodegradable and environmentally friendly. In the present study, we identified an insecticidal biosurfactant produced by Pseudomonas protegens F6 (F6) and examined its use for aphid control. The growth of F6 was accompanied by increased aphid mortality and decreased water surface tension. Bioassay-guided chromatography coupled with instrumental analyses, nuclear magnetic resonance (NMR), and time-of-flight mass spectrometer (TOF MS) identified orfamide A as a major metabolite that showed insecticidal activity against green peach aphid (Myzus persicae). Orfamide A revealed a dose-dependent mortality against aphids, producing a LC50 value at 34.5 μg/mL, and caused a considerable decrease in the surface tension value of water, giving about 35.7 mN/m at 10 μg/mL. Laboratory and greenhouse mortality bioassays suggested that orfamide A may be applicable to control aphids in organic agriculture. This is the first report of orfamide A as an insecticidal metabolite against Myzus persicae. © 2013 American Chemical Society.

Ko S.-M.,Chonnam National University | Vaidya B.,Korea Advanced Institute of Science and Technology | Kwon J.,Korea Basic Science Institute | Lee H.-M.,Korea Advanced Institute of Science and Technology | And 6 more authors.
Journal of Food Protection | Year: 2015

Outbreaks of hepatitis A virus (HAV) infections are most frequently associated with the consumption of contaminated oysters. A rapid and selective concentration method is necessary for the recovery of HAV from contaminated oysters prior to detection using PCR. In this study, ricin extracted from castor beans (Ricinus communis) was tested as an alternative to antibody used in immunomagnetic separation while concentrating HAV prior to its detection using reverse transcription PCR. Initially, the extracted proteins from castor beans were fractionated into 13 fractions by gel filtration chromatography. Pretreatment of different protein fractions showed a variation in binding of HAV viral protein (VP) 1 to oyster digestive tissue in the range of 25.9 to 63.9%. The protein fraction, which caused the highest reduction in binding of VP1 to the tissue, was identified as ricin A by quadrupole time-of-flight mass spectrometry. Ricin A could significantly inhibit binding of VP1 to the tissue with a 50% inhibitory concentration of 4.5 μg/ml and a maximal inhibitory concentration of 105.2%. The result showed that the rate of inhibition of HAV binding to tissue was higher compared to the rate of ricin itself binding to HAV (slope: 0.0029 versus 0.00059). However, ricin A concentration showed a higher correlation to the relative binding of ricin itself to HAV than the inhibition of binding of HAV to the tissue (coefficient of determination, R2: 0.9739 versus 0.6804). In conclusion, ricin A-linked magnetic bead separation combined with reverse transcription PCR can successfully detect HAV in artificially seeded oyster digestive tissue up to a 10-4 dilution of the virus stock (titer: 104 50% tissue culture infective dose per ml). Copyright ©, International Association for Food Protection.

Kim J.S.,Institute of Insect and Sericultural Research | Park J.S.,Institute of Environmentally Friendly Agriculture | Kim M.J.,Institute of Environmentally Friendly Agriculture | Kang P.D.,Korea Advanced Institute of Science and Technology | And 4 more authors.
Journal of Asia-Pacific Entomology | Year: 2012

Samia cynthia ricini is a commercial silk-producing insect that is now reared year-round in Korea, with the expectation of being utilized for diverse purposes. In this report, we present the complete mitochondrial genome (mitogenome) of S. c. ricini. The 15,384-bp long S. cynthia ricini mitogenome was amplified into 26 short fragments using three long overlapping fragments using primers designed from reported lepidopteran mitogenome sequences. The genome comprises 37 genes (13 protein-coding genes, two rRNA genes, and 22 tRNA genes), and one large non-coding region termed the A+T-rich region. The A/T content of the third codon position was 91.7%, which was 18.8% and 21.6% higher than those of first and second codon positions, respectively. The high A/T content in the genome is reflected in codon usage, accounting for 39.5% of A/T-composed codons (TTA, ATT, TTT, and ATA). Unlike a previous report on the start codon for the COI gene, the S. c. ricini COI gene commences with a typical ATT codon. A total of 221bp of non-coding sequences are dispersed in 17 regions, ranging in size from 1 to 54bp, which comprise 1.4% of the total genome. One of the non-coding sequence located between tRNA Gln and ND2 (54bp) has 77% sequence homology with the 5'-sequence of the neighboring ND2 gene, suggesting partial duplication of the sequence during evolution. The 361-bp long A+T-rich region contains an 18bp-long poly-T stretch, ATAGA motif, ATTTA element, microsatellite-like A/T sequence, poly-A stretch and one tRNA-like sequence, as typically found in Lepidoptera including Bombycoidea. © 2011 Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Society.

Loading Institute of Environmentally Friendly Agriculture collaborators
Loading Institute of Environmentally Friendly Agriculture collaborators