Institute of Forest Entomology

Vienna, Austria

Institute of Forest Entomology

Vienna, Austria
SEARCH FILTERS
Time filter
Source Type

Lindner M.,European forest Institute | Maroschek M.,University of Vienna | Netherer S.,Institute of Forest Entomology | Kremer A.,French National Institute for Agricultural Research | And 8 more authors.
Forest Ecology and Management | Year: 2010

This study compiles and summarizes the existing knowledge about observed and projected impacts of climate change on forests in Europe. Forests will have to adapt not only to changes in mean climate variables but also to increased variability with greater risk of extreme weather events, such as prolonged drought, storms and floods. Sensitivity, potential impacts, adaptive capacity, and vulnerability to climate change are reviewed for European forests. The most important potential impacts of climate change on forest goods and services are summarized for the Boreal, Temperate Oceanic, Temperate Continental, Mediterranean, and mountainous regions. Especially in northern and western Europe the increasing atmospheric CO2 content and warmer temperatures are expected to result in positive effects on forest growth and wood production, at least in the short-medium term. On the other hand, increasing drought and disturbance risks will cause adverse effects. These negative impacts are very likely to outweigh positive trends in southern and eastern Europe. From west to east, the drought risk increases. In the Mediterranean regions productivity is expected to decline due to strongly increased droughts and fire risks. Adaptive capacity consists of the inherent adaptive capacity of trees and forest ecosystems and of socio-economic factors determining the capability to implement planned adaptation. The adaptive capacity in the forest sector is relatively large in the Boreal and the Temperate Oceanic regions, more constrained by socio-economic factors in the Temperate Continental, and most limited in the Mediterranean region where large forest areas are only extensively managed or unmanaged. Potential impacts and risks are best studied and understood with respect to wood production. It is clear that all other goods and services provided by European forests will also be impacted by climate change, but much less knowledge is available to quantify these impacts. Understanding of adaptive capacity and regional vulnerability to climate change in European forests is not well developed and requires more focussed research efforts. An interdisciplinary research agenda integrated with monitoring networks and projection models is needed to provide information at all levels of decision making, from policy development to the management unit. © 2009 Elsevier B.V. All rights reserved.


Haq I.U.,International Atomic Energy Agency | Haq I.U.,Pakistan National Agricultural Research Center | Mayr L.,International Atomic Energy Agency | Teal P.E.A.,U.S. Department of Agriculture | And 4 more authors.
Journal of Insect Physiology | Year: 2010

The application of methoprene, and providing access to diet including hydrolyzed yeast, are treatments known to enhance mating success in the male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), supporting their use in mass rearing protocols for sterile males in the context of sterile insect technique (SIT) programmes. The objective of the present laboratory study was to investigate the effect of methoprene application and diet supplementation with hydrolyzed yeast (protein) on the turnover of body lipids and protein to confirm the feasibility of their application in melon fly SIT mass-rearing programmes. While females had access to a diet that included hydrolyzed yeast (protein), males were exposed to one of the following treatments: (1) topical application of methoprene and access to diet including protein (M+P+); (2) only diet including protein (M-P+); (3) only methoprene (M+P-) and (4) untreated, only sugar-fed, control males (M-P-). Total body carbon (TBC) and total body nitrogen (TBN) of flies were measured at regular intervals from emergence to 35 days of age for each of the different treatments. Nitrogen assimilation and turnover in the flies were measured using stable isotope (15N) dilution techniques. Hydrolyzed yeast incorporation into the diet significantly increased male body weight, TBC and TBN as compared to sugar-fed males. Females had significantly higher body weight, TBC and TBN as compared to all males. TBC and TBN showed age-dependent changes, increasing until the age of sexual maturity and decreasing afterwards in both sexes. Methoprene treatment did not significantly affect TBC or TBN. The progressive increase with age of TBC suggests that lipogenesis occurs in adult male B. cucurbitae, as is the case in other tephritids. Stable isotope dilution was shown to be an effective method for determining N uptake in B. cucurbitae. This technique was used to show that sugar-fed males rely solely on larval N reserves and that the N uptake rate in males with access to diet including hydrolyzed yeast was higher shortly after emergence and then stabilized. The implications of the results for SIT applications are discussed. © 2010 Elsevier Ltd.

Loading Institute of Forest Entomology collaborators
Loading Institute of Forest Entomology collaborators