Xalapa de Enríquez, Mexico
Xalapa de Enríquez, Mexico

Time filter

Source Type

Vovides A.G.,Institute of Ecology INECOL | Vovides A.G.,Environmental Microbiology Group | Bashan Y.,Environmental Microbiology Group | Bashan Y.,The Bashan Foundation | And 2 more authors.
Restoration Ecology | Year: 2011

Although several damaged mangrove ecosystems have been restored worldwide, so far, it has not been established whether a restored mangrove system regains all the functional properties of preserved mangroves. This study measured nitrogen fixation as an indicator of whether disturbed mangroves that were reforested or naturally regenerated fully recovered from this disturbance at a functional level. Rates of nitrogen fixation were measured for one year in impaired, preserved, reforested, and naturally regenerated mangroves dominated by the black mangrove (Avicennia germinans). There was no significant difference in rates of nitrogen fixation among preserved and adjacent reforested and naturally regenerated mangroves, but a significant reduction occurred in an impaired mangrove. Nitrogen fixation was mainly controlled by pH, salinity, and temperature. The highest rates of nitrogen fixation occurred in summer at pH values less than 6.4, whereas the impaired mangrove had higher pH and salinity and had very low nitrogen fixation activity. These results suggest that nitrogen fixation can be used as an ecological indicator of the success of reforestation and as a sensitive measure of perturbations in mangroves. © 2010 Society for Ecological Restoration International.


Gonzalez M.,Tecnalia | Venter G.J.,Onderstepoort Veterinary Institute | Lopez S.,CSIC - Institute of Advanced Chemistry of Catalonia | Iturrondobeitia J.C.,University of the Basque Country | And 2 more authors.
Medical and Veterinary Entomology | Year: 2014

The efficacy of 23 compounds in repelling Culicoides biting midges (Diptera: Ceratopogonidae), particularly Culicoides obsoletus (Meigen) females, was determined by means of a Y-tube olfactometer. The 10 most effective compounds were further evaluated in landing bioassays. The six most promising compounds (including chemical and plant-derived repellents) were evaluated at 10% and 25% concentrations in field assays using Centers for Disease Control (CDC) light traps. At least three compounds showed promising results against Culicoides biting midges with the methodologies used. Whereas olfactometer assays indicated DEET at 1μg/μL to be the most effective repellent, filter paper landing bioassays showed plant-derived oils to be better. Light traps fitted with polyester mesh impregnated with a mixture of octanoic, decanoic and nonanoic fatty acids at 10% and 25% concentrations collected 2.2 and 3.6 times fewer midges than control traps and were as effective as DEET, which is presently considered the reference standard insect repellent. The best plant-derived product was lemon eucalyptus oil. Although these have been reported as safe potential repellents, the present results indicate DEET and the mixture of organic fatty acids to be superior and longer lasting. © 2014 The Royal Entomological Society.


Olguin E.J.,Institute of Ecology INECOL | Mendoza A.,Institute of Ecology INECOL | Gonzalez-Portela R.E.,Institute of Ecology INECOL | Novelo E.,National Autonomous University of Mexico
New Biotechnology | Year: 2013

The production of biodiesel utilizing microalgae has driven innovation worldwide, especially trying to overcome the current economic and technological limitations of the whole process. Within these efforts, the use of wastewater to cultivate oleaginous microalgae or the use of dual-purpose microalgae-bacteria-based systems that treat wastewater and produce oleaginous microalgae have become an attractive alternative. The aim of this work was to evaluate the population dynamics which occurred in mixed cultures of Neochloris oleoabundans with other native microalgae, in mixtures of a synthetic medium (BBM) and water of an urban polluted river. The effect of temperature, nutrient availability and the microscopic monitoring of the population dynamics in such mixed cultures were carried out. Furthermore, the isolation of the predominant consortium of diatoms and the evaluation of its kinetics of growth and its capacity for removal of pollutants was also performed. Results indicated that such green microalgae only predominated in mixtures containing 80% or 60% of the synthetic medium. In mixtures containing a volume of the polluted river higher than 40%, other microalgae predominated, especially diatoms of various genera. The diatom consortium isolated from a 100% of the river's water sampled in spring (April), was formed mainly by a population of Nitzchia frustulum and in less extent of Navicula sp. It showed a significantly higher specific growth rate when cultivated in water from the river, compared to cultures in synthetic modified diatom medium (MDM) and at 32°C, compared to cultures incubated at 25°C. The consortium was able to remove 95.45% and 95.78% of ammonia nitrogen, 60% and 62.5% of nitrates at 32°C and 25°C, respectively, after 2 days. It also removed 95% of phosphates at 32°C and 67% at 25°C after 4 days from the polluted river. Diatoms also showed significant accumulation of lipids after 10 days of cultivation when stained with Sudan III. In conclusion, such diatom consortium showed a large potential for being used in a dual-purpose system that could treat the water from polluted streams and that could produce lipid rich biomass. © 2013 Elsevier B.V.


Garcia-Robledo C.,Institute of Ecology INECOL | Garcia-Robledo C.,Smithsonian Institution | Staines C.L.,Institute of Ecology INECOL | Staines C.L.,Smithsonian Institution | And 2 more authors.
ZooKeys | Year: 2015

The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae) includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (C. kuprewiczae sp. n.) that feeds on two species of bromeliads (Pitcairnia arcuata and P. brittoniana, Bromeliaceae: Pitcairnioideae). Cephaloleia kuprewiczae was previously described as Cephaloleia histrionica. This study includes evidence from DNA barcodes (COI), larval and adult morphology and insect diets that separates C. kuprewiczae from C. histrionica as a new species. © 2015 Carlos García-Robledo et al.


Kress W.J.,Smithsonian Institution | Garcia-Robledo C.,Smithsonian Institution | Garcia-Robledo C.,Institute of Ecology INECOL | Uriarte M.,Columbia University | Erickson D.L.,Smithsonian Institution
Trends in Ecology and Evolution | Year: 2015

The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. © 2014.


Olguin E.J.,Institute of Ecology INECOL | Castillo O.S.,Institute of Ecology INECOL | Mendoza A.,Institute of Ecology INECOL | Tapia K.,Institute of Ecology INECOL | And 2 more authors.
New Biotechnology | Year: 2014

Dual purpose systems that treat wastewater and produce lipid rich microalgae biomass have been indicated as an option with great potential for production of biodiesel at a competitive cost. The aim of the present work was to develop a dual purpose system for the treatment of the anaerobic effluents from pig waste utilizing Neochloris oleoabundans and to evaluate its growth, lipid content and lipid profile of the harvested biomass and the removal of nutrients from the media. Cultures of N. oleoabundans were established in 4L flat plate photobioreactors using diluted effluents from two different types of anaerobic filters, one packed with ceramic material (D1) and another one packed with volcanic gravel (D2). Maximum biomass concentration in D1 was 0.63gL-1 which was significantly higher than the one found in D2 (0.55gL-1). Cultures were very efficient at nutrient removal: 98% for NNH4 + and 98% for PO4 3-. Regarding total lipid content, diluted eflluents from D2 promoted a biomass containing 27.4% (dry weight) and D1 a biomass containing 22.4% (dry weight). Maximum lipid productivity was also higher in D2 compared to D1 (6.27±0.62mgL-1d-1 vs. 5.12±0.12mgL-1d-1). Concerning the FAMEs profile in diluted effluents, the most abundant one was C18:1, followed by C18:2 and C16:0. The profile in D2 contained less C18:3 (linolenic acid) than the one in D1 (4.37% vs. 5.55%). In conclusion, this is the first report demonstrating that cultures of N. oleoabundans treating anaerobic effluents from pig waste are very efficient at nutrient removal and a biomass rich in lipids can be recovered. The maximum total lipid content and the most convenient FAMEs profile were obtained using effluents from a digester packed with volcanic gravel. © 2015 Elsevier B.V.


Olguin E.J.,Institute of Ecology INECOL | Sanchez-Galvan G.,Institute of Ecology INECOL
New Biotechnology | Year: 2012

Phytoremediation and phycoremediation are cost-effective and environmentally sound technologies for the treatment of polluted streams and wastewaters contaminated with metals. Currently, the most commonly used parameter to assess the metal uptake of biomass is (q) expressed as mg metal g dry weight-1. By contrast, the bioconcentration factor (BCF) is one of the most widely used factors to evaluate the metal uptake capacity of macrophytes. However, both parameters the metal uptake (q) and the BCF cannot be applied to differentiate between the ability of live plants or photosynthetic microorganisms to adsorb the metal onto their surface through passive mechanisms or to accumulate the contaminant at intracellular level through metabolically active mechanisms. This mini review has the objective of discussing the need to differentiate between bioadsorption and bioaccumulation of metals in live plants and photosynthetic microorganisms used in phytofiltration and phycoremediation processes, respectively. The use of two specific factors, the bioadsorption factor (BAF) and the intracellular accumulation factor (IAF) that have been previously reported in order to make a clear differentiation between these two metal removal mechanisms in Salvinia minima and Leptolyngbya crossbyana is highlighted. It is suggested that the BAF and the IAF can be used in phytofiltration wetlands and phycoremediation lagoons, where there is the need of specific information indicating the fate of the metal in order to gain information about possible removal mechanisms. These factors could also provide a tool to decide whether it is possible to harvest the biomass and to recover a fair amount of metal adsorbed onto the surface by means of desorbent agents. A critical assessment of the use of EDTA as desorbent agent is also included. © 2012 Elsevier B.V.


The production of biodiesel utilizing microalgae has driven innovation worldwide, especially trying to overcome the current economic and technological limitations of the whole process. Within these efforts, the use of wastewater to cultivate oleaginous microalgae or the use of dual-purpose microalgae-bacteria-based systems that treat wastewater and produce oleaginous microalgae have become an attractive alternative. The aim of this work was to evaluate the population dynamics which occurred in mixed cultures of Neochloris oleoabundans with other native microalgae, in mixtures of a synthetic medium (BBM) and water of an urban polluted river. The effect of temperature, nutrient availability and the microscopic monitoring of the population dynamics in such mixed cultures were carried out. Furthermore, the isolation of the predominant consortium of diatoms and the evaluation of its kinetics of growth and its capacity for removal of pollutants was also performed. Results indicated that such green microalgae only predominated in mixtures containing 80% or 60% of the synthetic medium. In mixtures containing a volume of the polluted river higher than 40%, other microalgae predominated, especially diatoms of various genera. The diatom consortium isolated from a 100% of the rivers water sampled in spring (April), was formed mainly by a population of Nitzchia frustulum and in less extent of Navicula sp. It showed a significantly higher specific growth rate when cultivated in water from the river, compared to cultures in synthetic modified diatom medium (MDM) and at 32C, compared to cultures incubated at 25C. The consortium was able to remove 95.45% and 95.78% of ammonia nitrogen, 60% and 62.5% of nitrates at 32C and 25C, respectively, after 2 days. It also removed 95% of phosphates at 32C and 67% at 25C after 4 days from the polluted river. Diatoms also showed significant accumulation of lipids after 10 days of cultivation when stained with Sudan III. In conclusion, such diatom consortium showed a large potential for being used in a dual-purpose system that could treat the water from polluted streams and that could produce lipid rich biomass.


PubMed | Institute of Ecology INECOL
Type: Journal Article | Journal: New biotechnology | Year: 2012

Phytoremediation and phycoremediation are cost-effective and environmentally sound technologies for the treatment of polluted streams and wastewaters contaminated with metals. Currently, the most commonly used parameter to assess the metal uptake of biomass is (q) expressed as mg metal g dry weight(-1). By contrast, the bioconcentration factor (BCF) is one of the most widely used factors to evaluate the metal uptake capacity of macrophytes. However, both parameters the metal uptake (q) and the BCF cannot be applied to differentiate between the ability of live plants or photosynthetic microorganisms to adsorb the metal onto their surface through passive mechanisms or to accumulate the contaminant at intracellular level through metabolically active mechanisms. This mini review has the objective of discussing the need to differentiate between bioadsorption and bioaccumulation of metals in live plants and photosynthetic microorganisms used in phytofiltration and phycoremediation processes, respectively. The use of two specific factors, the bioadsorption factor (BAF) and the intracellular accumulation factor (IAF) that have been previously reported in order to make a clear differentiation between these two metal removal mechanisms in Salvinia minima and Leptolyngbya crossbyana is highlighted. It is suggested that the BAF and the IAF can be used in phytofiltration wetlands and phycoremediation lagoons, where there is the need of specific information indicating the fate of the metal in order to gain information about possible removal mechanisms. These factors could also provide a tool to decide whether it is possible to harvest the biomass and to recover a fair amount of metal adsorbed onto the surface by means of desorbent agents. A critical assessment of the use of EDTA as desorbent agent is also included.

Loading Institute of Ecology INECOL collaborators
Loading Institute of Ecology INECOL collaborators