Time filter

Source Type

Bauer A.,Institute of Doping Analysis and Sports Biochemistry IDAS | Rataj F.,TU Dresden | Zierau O.,TU Dresden | Anielski P.,Institute of Doping Analysis and Sports Biochemistry IDAS | And 4 more authors.
Archives of Toxicology | Year: 2012

Anabolic-androgenic steroids are frequently misused compounds in sports, and they belong to the controlled substances according to the requirements of the World Anti-Doping Agency. The classical techniques of steroid detection are mass spectrometry coupled to gas or liquid chromatography. Biological methods that base on the ability of substances to bind the steroid receptor are not applied in routine doping control procedures so far, but they appear to be useful for characterization of steroid androgenic potential. In this study we used the yeast androgen receptor reporter system (YAS), which in the past has already successfully been applied to both various androgenic substances and also urine samples. Giving attention to the androgenic potential of steroidal dietary supplements, we exemplified the analysis using both mass spectrometry techniques and the YAS-based assay on the product "Syntrax Tetrabol" which was a confiscated dietary supplement and marketed as a steroid precursor. Identification, structure and the kinetic behavior of its excreted metabolites were analyzed by NMR, GC-MS and LC-MS/MS. The androgenic potential of the parent compound as well as its metabolites in urine was evaluated with the help of the YAS. The application of urine samples with a previous deconjugation and the inclusion of urine density values were carried out and led to increased responses on the YAS. Further, the possibility of a complementary application of structure-based instrumental analysis and biological detection of androgenicity with the help of the YAS seems to be desirable and is discussed. © Springer-Verlag Berlin Heidelberg 2012.


Keiler A.M.,TU Dresden | Dorfelt P.,TU Dresden | Chatterjee N.,University at Albany | Helle J.,TU Dresden | And 6 more authors.
Journal of Steroid Biochemistry and Molecular Biology | Year: 2015

The potential utilization of plant secondary metabolites possessing estrogenic properties as alternatives to the classical hormone replacement therapy (HRT) for the relief of postmenopausal complaints asks for an evaluation regarding the safety in reproductive organs. In order to contribute to the estimation of the safety profile of the flavanones naringenin (Nar), 8-prenylnaringenin (8PN) and 6-(1,1-dimethylally) naringenin (6DMAN), we investigated uterus and vagina derived from a three-day uterotrophic assay in rats. Also, we investigated the metabolite profile resulting from the incubation of the three substances with liver microsomes. While no metabolites were detectable for naringenin, hydroxylation products were observed for 8PN and 6DMAN after incubation with human as well as rat liver microsomes. The parent compound naringenin did not evoke any estrogenic responses in the investigated parameters. A significant increase of the uterine wet weight, uterine epithelial thickness and proliferating vaginal cells was observed in response to 8PN, questioning the safety of 8PN if applied in the human situation. In contrast, no estrogenic effects on the reproductive organs were observed for 6DMAN in the conducted study, rendering it the compound with a more promising safety profile, therefore justifying further investigations into its efficacy to alleviate postmenopausal discomforts. © 2014 Elsevier Ltd. All rights reserved.


Thomas A.,German Sport University Cologne | Gorgens C.,German Sport University Cologne | Guddat S.,German Sport University Cologne | Thieme D.,Institute of Doping Analysis and Sports Biochemistry IDAS | And 3 more authors.
Journal of Separation Science | Year: 2016

The analysis of low-molecular-mass peptides in doping controls has become a mandatory aspect in sports drug testing and, thus, the number of samples that has to be tested for these analytes has been steadily increasing. Several peptides <2 kDa with performance-enhancing properties are covered by the list of prohibited substances of the World Anti-Doping Agency including Desmopressin, LH-RH, Buserelin, Triptorelin, Leuprolide, GHRP-1, GHRP-2, GHRP-3, GHRP-4, GHRP-5,GHRP-6, Alexamorelin, Ipamorelin, Hexarelin, ARA-290, AOD-9604, TB-500 and Anamorelin. With the presented method employing direct urine injection into a liquid chromatograph followed by ion-mobility time-of-flight mass spectrometry, a facile, specific and sensitive assay for the aforementioned peptidic compounds is provided. The accomplished sensitivity allows for limits of detection between 50 and 500 pg/mL and thus covers the minimum required performance level of 2 ng/mL accordingly. The method is precise (imprecision <20%) and linear in the estimated working range between 0 and 10 ng/mL. The stability of the peptides in urine was tested, and -20°C was found to be the appropriate storage temperature for sports drug testing. Finally, proof-of-concept was shown by analysing elimination study urine samples collected from individuals having administered GHRP-6, GHRP-2, or LHRH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


PubMed | TU Dresden, University at Albany and Institute of Doping Analysis and Sports Biochemistry IDAS
Type: | Journal: The Journal of steroid biochemistry and molecular biology | Year: 2014

The potential utilization of plant secondary metabolites possessing estrogenic properties as alternatives to the classical hormone replacement therapy (HRT) for the relief of postmenopausal complaints asks for an evaluation regarding the safety in reproductive organs. In order to contribute to the estimation of the safety profile of the flavanones naringenin (Nar), 8prenylnaringenin (8PN) and 6(1,1dimethylally) naringenin (6DMAN), we investigated uterus and vagina derived from a threeday uterotrophic assay in rats. Also, we investigated the metabolite profile resulting from the incubation of the three substances with liver microsomes. While no metabolites were detectable for naringenin, hydroxylation products were observed for 8PN and 6DMAN after incubation with human as well as rat liver microsomes. The parent compound naringenin did not evoke any estrogenic responses in the investigated parameters. A significant increase of the uterine wet weight, uterine epithelial thickness and proliferating vaginal cells was observed in response to 8PN, questioning the safety of 8PN if applied in the human situation. In contrast, no estrogenic effects on the reproductive organs were observed for 6DMAN in the conducted study, rendering it the compound with a more promising safety profile, therefore justifying further investigations into its efficacy to alleviate postmenopausal discomforts.

Loading Institute of Doping Analysis and Sports Biochemistry IDAS collaborators
Loading Institute of Doping Analysis and Sports Biochemistry IDAS collaborators