Institute of Dental Research

Sydney, Australia

Institute of Dental Research

Sydney, Australia
SEARCH FILTERS
Time filter
Source Type

Pyrc K.,Jagiellonian University | Milewska A.,Jagiellonian University | Kantyka T.,Jagiellonian University | Sroka A.,Jagiellonian University | And 8 more authors.
Infection and Immunity | Year: 2013

Porphyromonas gingivalis is a Gram-negative bacterium associated with the development of periodontitis. The evolutionary success of this pathogen results directly from the presence of numerous virulence factors, including peptidylarginine deiminase (PPAD), an enzyme that converts arginine to citrulline in proteins and peptides. Such posttranslational modification is thoughtto affect the function of many different signaling molecules. Taking into account the importance of tissue remodeling and repair mechanisms for periodontal homeostasis, which are orchestrated by ligands of the epidermal growth factor receptor (EGFR), we investigated the ability of PPAD to distort cross talk between the epithelium and the epidermal growth factor (EGF) signaling pathway. We found that EGF preincubation with purified recombinant PPAD, or a wild-type strain of P. gingivalis, but not with a PPAD-deficient isogenic mutant, efficiently hindered the ability of the growth factor to stimulate epidermal cell proliferationand migration. In addition, PPAD abrogated EGFR-EGF interaction-dependent stimulation of expression of suppressor of cytokine signaling 3 and interferon regulatory factor 1. Biochemical analysis clearly showed that the PPAD-exerted effects on EGF activities were solely due to deimination of the C-terminal arginine. Interestingly, citrullination of two internal Arg residues with human endogenous peptidylarginine deiminases did not alter EFG function, arguing that the C-terminal arginine is essential for EGF biological activity. Cumulatively, these data suggest that the PPAD-activity-abrogating EGF function in gingival pockets may at least partially contribute to tissue damage and delayed healing within P. gingivalis-infected periodontia. © 2013, American Society for Microbiology.


Cerda-Costa N.,Institute of Barcelona | Guevara T.,Institute of Barcelona | Karim A.Y.,Jagiellonian University | Ksiazek M.,Jagiellonian University | And 6 more authors.
Molecular Microbiology | Year: 2011

Metallopeptidases (MPs) are among virulence factors secreted by pathogenic bacteria at the site of infection. One such pathogen is Tannerella forsythia, a member of the microbial consortium that causes peridontitis, arguably the most prevalent infective chronic inflammatory disease known to mankind. The only reported MP secreted by T. forsythia is karilysin, a 52 kDa multidomain protein comprising a central 18 kDa catalytic domain (CD), termed Kly18, flanked by domains unrelated to any known protein. We analysed the 3D structure of Kly18 in the absence and presence of Mg2+ or Ca2+, which are required for function and stability, and found that it evidences most of the structural features characteristic of the CDs of mammalian matrix metalloproteinases (MMPs). Unexpectedly, a peptide was bound to the active-site cleft of Kly18 mimicking a left-behind cleavage product, which revealed that the specificity pocket accommodates bulky hydrophobic side-chains of substrates as in mammalian MMPs. In addition, Kly18 displayed a unique Mg2+ or Ca2+ binding site and two flexible segments that could play a role in substrate binding. Phylogenetic and sequence similarity studies revealed that Kly18 is evolutionarily much closer to winged-insect and mammalian MMPs than to potential bacterial counterparts found by genomic sequencing projects. Therefore, we conclude that this first structurally characterized non-mammalian MMP is a xenologue co-opted through horizontal gene transfer during the intimate coexistence between T. forsythia and humans or other animals, in a very rare case of gene shuffling from eukaryotes to prokaryotes. Subsequently, this protein would have evolved in a bacterial environment to give rise to full-length karilysin that is furnished with unique flanking domains that do not conform to the general multidomain architecture of animal MMPs. © 2010 Blackwell Publishing Ltd.


Maresz K.J.,Jagiellonian University | Hellvard A.,University of Bergen | Hellvard A.,Gothenburg University | Sroka A.,Jagiellonian University | And 18 more authors.
PLoS Pathogens | Year: 2013

Rheumatoid arthritis and periodontitis are two prevalent chronic inflammatory diseases in humans and are associated with each other both clinically and epidemiologically. Recent findings suggest a causative link between periodontal infection and rheumatoid arthritis via bacteria-dependent induction of a pathogenic autoimmune response to citrullinated epitopes. Here we showed that infection with viable periodontal pathogen Porphyromonas gingivalis strain W83 exacerbated collagen-induced arthritis (CIA) in a mouse model, as manifested by earlier onset, accelerated progression and enhanced severity of the disease, including significantly increased bone and cartilage destruction. The ability of P. gingivalis to augment CIA was dependent on the expression of a unique P. gingivalis peptidylarginine deiminase (PPAD), which converts arginine residues in proteins to citrulline. Infection with wild type P. gingivalis was responsible for significantly increased levels of autoantibodies to collagen type II and citrullinated epitopes as a PPAD-null mutant did not elicit similar host response. High level of citrullinated proteins was also detected at the site of infection with wild-type P. gingivalis. Together, these results suggest bacterial PAD as the mechanistic link between P. gingivalis periodontal infection and rheumatoid arthritis. © 2013 Maresz et al.


Nadkarni M.A.,Institute of Dental Research | Nadkarni M.A.,University of Sydney | Chen Z.,University of New South Wales | Wilkins M.R.,University of New South Wales | And 2 more authors.
PLoS ONE | Year: 2014

The human oral microbiome has a major role in oral diseases including dental caries. Our studies on progression of caries infection through dentin and more recently, the invasion of vital dental pulp, detected Lactobacillus rhamnosus in the initial stages of infection of vital pulp tissue. In this study employing current high-throughput next generation sequencing technology we sought to obtain insight into genomic traits of tissue invasive L. rhamnosus, to recognise biomarkers that could provide an understanding of pathogenic potential of lactobacilli, generally regarded as safe. Roche GS FLX+ technology was used to generate whole genome sequences of two clinical isolates of L. rhamnosus infecting vital pulp. Detailed genome-wide comparison of the genetic profiles of tissue invasive L. rhamnosus with probiotic L. rhamnosus was performed to test the hypothesis that specific strains of L. rhamnosus possessing a unique gene complement are selected for the capacity to invade vital pulp tissue. Analysis identified 264 and 258 genes respectively, from dental pulp-invasive L. rhamnosus strains LRHMDP2 and LRHMDP3 isolated from two different subjects that were not present in the reference probiotic L. rhamnosus strain ATCC 53103 (GG). Distinct genome signatures identified included the presence of a modified exopolysaccharide cluster, a characteristic confirmed in a further six clinical isolates. Additional features of LRHMDP2 and LRHMDP3 were altered transcriptional regulators from RpoN, NtrC, MutR, ArsR and zinc-binding Cro/CI families, as well as changes in the two-component sensor kinase response regulator and ABC transporters for ferric iron. Both clinical isolates of L. rhamnosus contained a single SpaFED cluster, as in L. rhamnosus Lc705, instead of the two Spa clusters (SpaCBA and SpaFED) identified in L. rhamnosus ATCC 53103 (GG). Genomic distance analysis and SNP divergence confirmed a close relationship of the clinical isolates but segregation from the reference probiotic L. rhamnosus strain ATCC 53103 (GG). © 2014 Nadkarni et al.


Charadram N.,Institute of Dental Research | Charadram N.,University of Sydney | Farahani R.M.,Institute of Dental Research | Farahani R.M.,University of Sydney | And 5 more authors.
Bone | Year: 2012

Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4, may explain the increased synthesis of collagen by odontoblasts in caries. These findings indicate a radical adaptive response of odontoblasts to microbial invasion of dentin with resultant synthesis of modified mineralized matrix. © 2011 Elsevier Inc.


Eaton R.E.,Institute of Dental Research | Jacques N.A.,Institute of Dental Research
Molecular Oral Microbiology | Year: 2010

Previous studies identified nine genes with increased expression in Streptococcus mutans biofilms of which six possessed putative ComX promoter sequences and were homologous to competence-induced genes in Streptococcus pneumoniae, Streptococcus gordonii and Bacillus subtilis. As competence increases in biofilms, a study was undertaken into the roles that these biofilm-induced genes might play in transformation. Only five of the nine gene deletions had a significant effect on transformation efficiency. Deletion of the genes for recombinase A, recA, DNA processing protein, dprA and single-stranded DNA-binding protein, ssbA, produced results comparable with those from other bacteria, supporting the contention that these proteins have similar functions in S. mutans competence. The uncharacterized genes SMU.769 and SMU.836 produced results in variance to deletion mutants of putative homologues in S. pneumoniae. Deletion of SMU.769 reduced chromosomal transformation 2.3-fold. SMU.769 belongs to a family of conserved genes induced by the competence-stimulating peptide and which have no established function. In contrast, deletion of SMU.836 reduced transformation of both plasmid and chromosomal DNA to <3%. Homology searches suggested that Smu.836 belongs to a family of competence-induced peptidoglycan hydrolases with a conserved enzyme domain and a species-variable cell-binding domain for which the best characterized member is the choline-binding protein D, CbpD, of S. pneumoniae. © 2010 John Wiley & Sons A/S.


Farahani R.M.,Institute of Dental Research | Farahani R.M.,University of Sydney | Nguyen K.-A.,Institute of Dental Research | Nguyen K.-A.,University of Sydney | And 2 more authors.
American Journal of Pathology | Year: 2010

We report evidence for anatomical and functional changes of dental pulp in response to bacterial invasion through dentin that parallel responses to noxious stimuli reported in neural crest-derived sensory tissues. Sections of resin-embedded carious adult molar teeth were prepared for immunohistochemistry, in situ hybridization, ultrastructural analysis, and microdissection to extract mRNA for quantitative analyses. In odontoblasts adjacent to the leading edge of bacterial invasion in carious teeth, expression levels of the gene encoding dentin sialo-protein were 16-fold greater than in odontoblasts of healthy teeth, reducing progressively with distance from this site of the carious lesion. In contrast, gene expression for dentin matrix protein-1 by odontoblasts was completely suppressed in carious teeth relative to healthy teeth. These changes in gene expression were related to a gradient of deposited reactionary dentin that displayed a highly modified structure. In carious teeth, interodontoblastic dentin sialo-protein- cells expressing glutamine synthetase (GS) showed up-regulation of glial fibrillary acidic protein (GFAP). These cells extended processes that associated with odontoblasts. Furthermore, connexin 43 established a linkage between adjacent GFAP+/GS+ cells in carious teeth only. These findings indicate an adaptive pulpal response to encroaching caries that includes the deposition of modified, calcified, dentin matrix associated with networks of GFAP+/GS+ interodontoblastic cells. A regulatory role for the networks of GFAP +/GS+ cells is proposed, mediated by the secretion of glutamate to modulate odontoblastic response. Copyright © American Society for Investigative Pathology.


Kianoush N.,Institute of Dental Research | Kianoush N.,University of Sydney | Adler C.J.,Institute of Dental Research | Adler C.J.,University of Sydney | And 5 more authors.
PLoS ONE | Year: 2014

Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3-V4 region) to compare microbial communities in layers ranging in pH from 4.5-7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, denoised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum , L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies. © 2014 Kianoush et al.


Nadkarni M.A.,Institute of Dental Research | Simonian M.R.,Institute of Dental Research | Harty D.W.S.,Institute of Dental Research | Zoellner H.,University of Sydney | And 2 more authors.
Journal of Clinical Microbiology | Year: 2010

In earlier studies we used molecular methods to identify the major bacterial consortia associated with advanced dentin caries. These consortia are dominated by bacteria from the families Lactobacillaceae, Streptococcaceae, Veillonellaceae (formerly Acidaminococcaceae), Eubacteriaceae, and Lachnospiraceae from the phylum Firmicutes; Coriobacteriaceae, Bifidobacteriaceae, and Propionibacteriaceae from the phylum Actinobacteria; and Prevotellaceae from the phylum Bacteroidetes, as well as fusobacteria. The phases of infection of vital pulp tissue by dentin microorganisms remain obscure. In the present study, fluorescence in situ hybridization was performed on sections of tissue embedded in resin. Probes for 16S rRNA corresponding to the major taxa of bacteria in carious dentin were used to provide information on the characteristics of pulp infection. Lactobacilli were prominent in 7 of 8 pulps determined to be at a limited stage of infection. Established infection (6 pulps) showed a more complex profile, with lactobacilli persisting in all of the lesions and with invasion of the necrotic regions of tissue by Bacteroidetes, fusobacteria, Lachnospiraceae, and Coriobacteriaceae in particular. Advanced infections (7 pulps) were characterized by mixed anaerobic species, with a strong representation by Coriobacteriaceae and Lachnospiraceae. Lactobacilli were not represented at this stage. Typically, groups of organisms were spatially isolated within the pulp tissue. Analysis indicated that lactobacilli could invade vital pulp tissue to achieve a very high biomass that was not associated with a detectable local inflammatory infiltrate. The findings establish that invasion of the dental pulp can be associated with a pronounced selection from the complex microbial populations within carious dentin, suggesting specific pathogenicity. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Zhou X.-Y.,Institute of Dental Research | Zhou X.-Y.,University of Sydney | Gao J.-L.,Institute of Dental Research | Gao J.-L.,University of Sydney | And 6 more authors.
Molecular Microbiology | Year: 2013

The Gram-negative periodontal pathogen Porphyromonas gingivalis produces a family of outer membrane-anchored proteases, the gingipains, shown to play an essential role in virulence of the organism. The C-terminal domain (CTD) of gingipains and other secreted proteins is known to be the targeting signal for maturation and translocation of the protein through the outer membrane. The CTD is subsequently cleaved during the secretion process. Multiple alignment of various CTDs failed to define a consensus sequence at the putative CTD processing site. Using mutagenesis, we were able to show that cleavage at the site is not dependent on a specific residue and that recognition of the site is independent of local sequence. Interestingly, length of the junction between the CTD and adjacent Ig-like subdomain has a critical influence on post-translational glycan modification of the protein, whereby insertion of additional residues immediately N-terminal to the cleavage site results in failure of glycan modification and release of soluble protease into the culture medium. Various hypotheses are presented to explain these phenomena. Knowledge of the role CTDs play in maturation of gingipains has broader application for understanding maturation of CTD homologues expressed by bacteria of the Bacteriodetes phylum. © 2013 John Wiley & Sons Ltd.

Loading Institute of Dental Research collaborators
Loading Institute of Dental Research collaborators