Institute of Consun Co. for Chinese Medicine in Kidney Diseases

Guangzhou, China

Institute of Consun Co. for Chinese Medicine in Kidney Diseases

Guangzhou, China
SEARCH FILTERS
Time filter
Source Type

Xu Y.,Macau University of Science and Technology | Feng L.,Macau University of Science and Technology | Wang S.,Macau University of Science and Technology | Zhu Q.,Macau University of Science and Technology | And 7 more authors.
Journal of Ethnopharmacology | Year: 2011

Ethnopharmacological relevance: Astragali radix is a traditional Chinese medicine that has long been used for treatment of diabetes and diabetes-associated disease, but its active component and mechanism on the disease is not well defined. Aim of the study: Infiltration of leukocytes within the glomeruli and vasculature is one of the early and characteristic features of diabetic nephropathy. Advanced glycation end products (AGEs) play pivotal role in the progression of diabetic-associated diseases. The present study was designed to explore the therapeutic effect of calycosin, an active component from A. radix, on AGEs-induced macrophages infiltration in HUVECs. Materials and methods: Transwell HUVEC-macrophage co-culture system was established to evaluate macrophage migration and adhesion. Immunocytochemistry was applied to examine TGF-beta1, ICAM-1 and RAGE protein expressions; real-time PCR was carried out to determine mRNA expression of TGF-beta1, ICAM-1 and RAGE. Immunofluorescence was carried out to observe estrogen receptor-alpha, ICAM-1, RAGE expression and the phosphorylation status of ERK1/2 and NF-κB. Results: Calycosin significantly reduced AGEs-induced macrophage migration and adhesion to HUVEC. Pre-treatment with calycosin strikingly down-regulated HUVEC TGF-beta1, ICAM-1 and RAGE expressions in both protein and mRNA levels. Furthermore, calycosin incubation significantly increased estrogen receptor expression and reversed AGEs-induced ERK1/2 and NF-κB phosphorylation and nuclear translocation in HUVEC, and this effect of calycosin could be inhibited by estrogen receptor inhibitor, ICI182780. Conclusions: These findings suggest that calycosin can reduce AGEs-induced macrophage migration and adhesion to endothelial cells and relieve the local inflammation; furthermore, this effect was via estrogen receptor-ERK1/2-NF-κB pathway. © 2011 Elsevier Ireland Ltd All rights reserved.


Wang S.-S.,Macau University of Science and Technology | Xu Y.-H.,Macau University of Science and Technology | Feng L.,Macau University of Science and Technology | Zhu Q.,Macau University of Science and Technology | He B.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases
Pharmazie | Year: 2011

The accumulation of advanced glycation end products (AGEs) on micro-vasculature has been demonstrated to be a key factor in diabetes mellitus development. Evidence suggests that AGEs triggered apoptotic changes in human umbilical vein endothelial cells (HUVECs) and protein kinase C (PKC)-beta plays a pivotal role in AGEs-induced micro-vascular dysfunction. Thus the effect of the selective PKC-beta inhibitor (LY333531) on AGEs-induced HUVEC apoptosis and proliferation was investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) was used to determine the cells viability after being incubated with AGEs and LY333531. Acridine orange/ethidium bromide (AO/EB) fluorescence detection was applied to observe the pro-apoptosis effects of AGEs and LY333531. Bcl-2, Bax and Bad proteins' expression were determined by StreptAvidin-Biotin-enzyme Complex (SABC) immunocytochenistry. The results showed that pretreatment with LY333531 strikingly decreased the chance of HUVEC survival and the effect of LY333531 on apoptotic cell death in HUVEC significantly increased compared with the AGEs group. Blockade of PKC-beta up-regulated the expression of Bax and Bad proteins and down-regulated the expression of Bcl-2 protein. Moreover, LY333531 reduced the ratio of Bcl-2/Bax. The results indicate that the selective PKC-beta inhibitor, LY333531, can further prompt AGEs-induced endothelial cells apoptosis. The increased expression of Bax, Bad and decreased expression of Bcl-2 and Bcl-2/Bax ratio are associated with the apoptotic process.


Xu Y.,Macau University of Science and Technology | Wang S.,Macau University of Science and Technology | Feng L.,Macau University of Science and Technology | Zhu Q.,Macau University of Science and Technology | And 3 more authors.
International Immunopharmacology | Year: 2010

Advanced glycation end products (AGEs) have been recognized as a pivotal inducer in diabetes and kinds of aging-related vasculopathy. Endothelial dysfunction and inflammatory cells adhesion to endothelium have been regarded as important and early factors in the pathogenesis of vascular complications in diabetic patients. Owing to the key role of PKC-beta in AGEs-induced vascular dysfunction, we investigated effects of blocking PKC-beta by LY333531 on macrophage adhesion to HUVEC and the related mechanism. Transwell HUVEC-macrophage co-culture system was established to evaluate macrophage migration and adhesion ability. Immunocytochemistry was applied to examine TGF-beta1, ICAM-1 and RAGE protein expressions by SABC or SABC-AP method; mRNA expression of TGF-beta1, ICAM-1 and RAGE was determined by real-time RT-PCR. SOD and MDA levels in culture supernatant were detected. We found that LY333531 significantly reduced AGEs-induced macrophage adhesion to HUVEC. Blockade of PKC-beta strikingly decreased HUVEC TGF-beta1 and ICAM-1 expression in both protein and mRNA levels, RAGE protein level was also down-regulated. Furthermore, the anti-oxidative stress index, SOD/MDA was dramatically elevated on LY333531 application. Therefore we conclude that LY333531 can reduce AGEs-induced macrophage adhesion to endothelial cells and relieve the local inflammation, this was realized by its effect on decreasing inflammatory cytokines' expression and increasing cell anti-oxidative ability.


Xu Y.-H.,Macau University of Science and Technology | Xiong J.,Macau University of Science and Technology | Wang S.-S.,Macau University of Science and Technology | Tang D.,Macau University of Science and Technology | And 2 more authors.
Journal of Natural Medicines | Year: 2014

Endothelial cell (EC) apoptosis plays a pivotal role in the progression of diabetic complications. Abundant studies have demonstrated the pivotal role of advanced glycation end products (AGEs) on the development of diabetes. The aim of the present study was to investigate the effect of calycosin, a phytoestrogen, on AGEs-induced human umbilical vein endothelial cell (HUVEC) apoptosis. Fluorescence polarization and fluorescence absorption assays indicated that calycosin interacted with AGEs in a time-dependent manner. Further studies found that calycosin entered the cells as detected by HPLC. The MTT method demonstrated that calycosin ameliorated AGEs-induced HUVEC apoptosis in a dose-dependent manner, and statistical significance was observed at 1 × 10-8 Mof calycosin; this behavior was further demonstrated by acridine orange/ethidium bromide staining in that the presence of calycosin dramatically reduced AGEs-induced red staining in HUVECs. Further studies found that pre-incubation with calycosin at 1 × 10-8 Mdramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry, and the effect of calycosin on rebalancing the ratio of Bcl-2/Bax was more significant than that of its glycoside, calycosin-7-O-β-Dglucopyranoside (CG). Furthermore, calycosin slightly reversedAGEs-induced cell oxidative stress at 1 × 10-8 M, but its antioxidative stress effect was less significant than that of CG. The present study strongly indicates that calycosin can enter the cell and modulate endothelial cell dysfunction by ameliorating AGEs-induced cell apoptosis. © The Japanese Society of Pharmacognosy and Springer Japan 2013.


Xu Y.,Macau University of Science and Technology | Xiong J.,Macau University of Science and Technology | Zhao Y.,Macau University of Science and Technology | He B.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases | And 3 more authors.
American Journal of Chinese Medicine | Year: 2015

Diabetes mellitus (DM) often accompanies liver dysfunction. Astragali Radix is a traditional Chinese herbal medicine that is widely administrated to ameliorate the symptoms of diabetes as well as liver dysfunction, but its acting mechanism is still not yet fully recognized. Advanced glycation end products (AGEs) play a key role in promoting diabetic organ dysfunction. Both hyperglycemia and AGEs can induce insulin resistance, hepatocyte damage and liver dysfunction. We designed this study to explore the effects of the phytoestrogen Calycosin, a major active component of Astragali Radix, on AGEs-induced glucose uptake dysfunction in the hepatocyte cell line and relevant mechanisms. MTT and BrdU methods were applied to evaluate cell viability. 2-NBDG was used to observe glucose uptake by a live cell imaging system. Immunofluorescence method was carried out to investigate GLUT1, GLUT4, and RAGE protein expressions on cell membrane. cAMP content was determined by an EIA method. We found Calycosin concentration-dependently ameliorated AGEs-induced hepatocyte viability damage. AGEs dramatically reduced basal glucose uptake in hepatocytes, and this reduction could be reversed by Calycosin administration. By immunofluorescence detection, we observed that Calycosin could inhibit AGEs-induced GLUT1 expression down-regulation via estrogen receptor (ER). Furthermore, Calycosin decreased AGEs-promoted RAGE and cAMP elevation in hepatocytes. These findings strongly suggest that Calycosin can ameliorate AGEs-promoted glucose uptake dysfunction in hepatocytes; the protection of cell viability and ER-RAGE and GLUT1 pathways play a significant role in this modulation. © 2015 World Scientific Publishing Company & Institute for Advanced Research in Asian Science and Medicine.


Tang D.,Macau University of Science and Technology | Tang D.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases | He B.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases | Zheng Z.-G.,Macau University of Science and Technology | And 8 more authors.
Planta Medica | Year: 2011

Radix Astragali, the dried roots of Astragalus membranaceus var. mongholicus, is well known to have a protective effect on diabetic nephropathy. However, the effects of isoflavonoids in Radix Astragali on glomerular cells, which play a key role in the development of diabetic vascular complications, remain largely unknown. Thus, the purpose of this study was to investigate in vitro the effect of calycosin and calycosin-7-O - D-glucoside, two major isoflavonoids in Radix Astragali, on high glucose-induced rat mesangial cells proliferation and AGEs-induced human glomerular endothelial cell apoptosis. The results indicated that both calycosin and calycosin-7-O - D-glucoside (10100M) could inhibit high glucose-induced mesangial cell early proliferation. Additionally, AGEs-mediated cell apoptosis was also attenuated by treatment of glomerular endothelial cells with either calycosin or calycosin-7-O - D-glucoside (1100M). Therefore, the results obtained in this study suggest that both calycosin and calycosin-7-O - D-glucoside have a significant therapeutic potential to modulate the development and/or progression of diabetic nephropathy. © Georg Thieme Verlag KG Stuttgart · New York.


Xu Y.,Macau University of Science and Technology | Feng L.,Macau University of Science and Technology | Wang S.,Macau University of Science and Technology | Zhu Q.,Macau University of Science and Technology | And 10 more authors.
Journal of Cellular Biochemistry | Year: 2011

Vasculopathy including endothelial cell (EC) apoptosis and inflammation contributes to the high incidence of stroke and myocardial infarction in diabetic patients. The aim of the present study was to investigate the effect of calycosin-7-O-β-D-glucopyranoside (CG), a phytoestrogen, on advanced glycation end products (AGEs)-induced HUVEC damage. We observed that CG can significantly ameliorate AGEs-induced HUVEC oxidative stress and apoptosis. The ratio of SOD/MDA was significantly increased to the normal level by CG pretreatment. CG preincubation dramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry. Moreover, CG ameliorated macrophage migration and adhesion to HUVEC; the monocyte chemotactic protein-1 and interleukin-6 levels in the culture supernatant were dramatically reduced by CG as determined by ELISA; the expressions of inflammatory proteins including ICAM-1, TGF-β1, and RAGE in both protein and mRNA levels were significantly reduced to the normal level by CG pretreatment as determined by immunocytochemistry and real-time RT-PCR. The intracellular investigation suggests that CG can reverse AGEs-activated ERK1/2 and NF-κB phosphorylation, in which estrogen receptors were involved in. Our results strongly indicate that CG can modulate EC dysfunction by ameliorating AGEs-induced cell apoptosis and inflammation. Copyright © 2011 Wiley-Liss, Inc.


Tang D.,Macau University of Science and Technology | Tang D.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases | Zhu J.-X.,Macau University of Science and Technology | Zhu J.-X.,Institute of Consun Co. for Chinese Medicine in Kidney Diseases | And 9 more authors.
Journal of Chromatography A | Year: 2013

Methylglyoxal (MGO), a very reactive metabolite of glucose, plays a pivotal role in the pathogenesis of several chronic diseases associated with diabetes, and it has been validated as an attractive target for them. In the present study, a simple and effective method, namely pre-column incubation followed by fast high performance liquid chromatography based on superficially porous particles (shell), coupled with diode array detection and tandem mass spectrometry (UHPLC-DAD-MSn), was proposed for rapid and high-throughput screening of natural MGO scavengers directly from the crude extract of Polygonum cuspidatum Sieb. et Zucc, a well-known traditional Chinese medicine which was used for treatment of diabetic complications. The hypothesis is that upon reaction with MGO, the peak areas of components with MGO scavenging potency in the chromatogram will be significantly reduced or disappear, and the structural characterization could be achieved by UHPLC-DAD-MSn hyphenated technique. First of all, 12 compounds in P. cuspidatum were well separated within shorter time (~12min) than previous methods and identified, and two of them, i.e. 3,5,4'-trihydroxystilbene-3-O-(6'-galloyl)-glucoside (3) and emodin-8-O-(6'-malonyl)-glucoside (8) were firstly reported ingredients. After incubation with MGO, four stilbene derivatives were demonstrated to possess potential MGO trapping activities. Furthermore, it was proved that both polydatin (piceid) and resveratrol exhibited effective MGO-trapping capacity by UHPLC analysis, and they could significantly inhibit the formation of advanced glycation end products (AGEs) in the human serum albumin (HSA)-MGO assay, indicating that they were potential candidate agents for delaying and preventing diabetic complications. Additionally, MGO trapping mechanism exploration by UHPLC-MSn showed that the positions 2 and 4 of the A ring of stilbene were major active sites for trapping MGO to form both mono- and di-MGO adducts, however, the glucosylation of the hydroxyl group would significantly decrease the trapping efficiency. Collectively, the current work provides a very promising method for rapid discovery of natural MGO scavengers directly from complex matrices such as herbal medicines with huge resources. © 2013 Elsevier B.V.


PubMed | Institute of Consun Co. for Chinese Medicine in Kidney Diseases and Macau University of Science and Technology
Type: Journal Article | Journal: Molecules (Basel, Switzerland) | Year: 2016

Defects in the gut epithelial barrier have now been recognized to be responsible for diabetic endotoxemia. In everyday life, Mulberry leaf tea is widely used in Asian nations due to its proposed benefits to health and control of diabetes. Evidence indicates the potential role of Kuwanon G (KWG), a component from


PubMed | Institute of Consun Co. for Chinese Medicine in Kidney Diseases and Macau University of Science and Technology
Type: Journal Article | Journal: The American journal of Chinese medicine | Year: 2015

Diabetes mellitus (DM) often accompanies liver dysfunction. Astragali Radix is a traditional Chinese herbal medicine that is widely administrated to ameliorate the symptoms of diabetes as well as liver dysfunction, but its acting mechanism is still not yet fully recognized. Advanced glycation end products (AGEs) play a key role in promoting diabetic organ dysfunction. Both hyperglycemia and AGEs can induce insulin resistance, hepatocyte damage and liver dysfunction. We designed this study to explore the effects of the phytoestrogen Calycosin, a major active component of Astragali Radix, on AGEs-induced glucose uptake dysfunction in the hepatocyte cell line and relevant mechanisms. MTT and BrdU methods were applied to evaluate cell viability. 2-NBDG was used to observe glucose uptake by a live cell imaging system. Immunofluorescence method was carried out to investigate GLUT1, GLUT4, and RAGE protein expressions on cell membrane. cAMP content was determined by an EIA method. We found Calycosin concentration-dependently ameliorated AGEs-induced hepatocyte viability damage. AGEs dramatically reduced basal glucose uptake in hepatocytes, and this reduction could be reversed by Calycosin administration. By immunofluorescence detection, we observed that Calycosin could inhibit AGEs-induced GLUT1 expression down-regulation via estrogen receptor (ER). Furthermore, Calycosin decreased AGEs-promoted RAGE and cAMP elevation in hepatocytes. These findings strongly suggest that Calycosin can ameliorate AGEs-promoted glucose uptake dysfunction in hepatocytes; the protection of cell viability and ER-RAGE and GLUT1 pathways play a significant role in this modulation.

Loading Institute of Consun Co. for Chinese Medicine in Kidney Diseases collaborators
Loading Institute of Consun Co. for Chinese Medicine in Kidney Diseases collaborators