Entity

Time filter

Source Type


Dumcenco D.,Electrical Engineering Institute | Ovchinnikov D.,Electrical Engineering Institute | Marinov K.,Electrical Engineering Institute | Lazic P.,Ruder Boskovic Institute | And 11 more authors.
ACS Nano | Year: 2015

Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80um. © 2015 American Chemical Society.


Tetreault N.,Institute of Physical Chemistry | Horvath E.,Institute of Condensed Matter Physics | Moehl T.,Institute of Physical Chemistry | Brillet J.,Institute of Physical Chemistry | And 9 more authors.
ACS Nano | Year: 2010

Herein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%. © 2010 American Chemical Society.


News Article | April 15, 2016
Site: www.scientificcomputing.com

Scientists have built a single-atom magnet that is the most stable to-date. The breakthrough paves the way for the scalable production of miniature magnetic storage devices. Magnetic storage devices, such as computer hard drives or memory cards, are widespread today. But as computer technology grows smaller, there is a need to also miniaturize data storage. This is epitomized by an effort to build magnets the size of a single atom. However, a magnet that small is very hard to keep "magnetized," which means that it would be unable to retain information for a meaningful amount time. In a breakthrough study published in Science, researchers led by EPFL and ETH Zurich have now built a single-atom magnet that, although working at around 40 Kelvin (-233.15 oC), is the smallest and most stable to date. Magnets work because of electron spin, which is a complicated motion best imagined as a spinning top. Electrons can spin up or down (something like clockwise or anti-clockwise), which creates a tiny magnetic field. In an atom, electrons usually come in pairs with opposite spins, thus cancelling out each other's magnetic field. But in a magnet, atoms have unpaired electrons, and their spins create an overall magnetic field. A challenge today is to build smaller and smaller magnets that can be implemented in data storage devices. The problem is something called "magnetic remanence," which describes the ability of a magnet to remain magnetized. Remanence is very difficult to observe from a single atom, because environmental fluctuations can flip its magnetic fields. In terms of technology, a limited remanence would mean limited information storage for atom-sized magnets. A team of scientists led by Harald Brune at EPFL and Pietro Gambardella at ETH Zurich, have built a prototypical single-atom magnet based on atoms of the rare-earth element holmium. The researchers placed single holmium atoms on ultrathin films of magnesium oxide, which were previously grown on a surface of silver. This method allows the formation of single-atom magnets with robust remanence. The reason is that the electron structure of holmium atoms protects the magnetic field from being flipped. The magnetic remanence of the holmium atoms is stable at temperatures around 40 Kelvin (-233.15 oC) which, though far from room temperature, are the highest achieved ever. The scientists' calculations demonstrate that the remanence of single holmium atoms at these temperatures is much higher than the remanence seen in previous magnets, which were also made up of three to 12 atoms. This makes the new single-atom magnet a worldwide record in terms of both size and stability. This project involved a collaboration of EPFL’s Institute of Condensed Matter Physics with ETH Zurich, Swiss Light Source (PSI), Vinča Institute of Nuclear Sciences (Belgrade), the Texas A&M University at Qatar and the European Synchrotron Radiation Facility (Grenoble). It was funded by the Swiss National Science Foundation, the Swiss Competence Centre for Materials Science and Technology (CCMX), the ETH Zurich, EPFL and the Marie Curie Institute, and the Serbian Ministry of Education and Science. Citation: Donati F, Rusponi S, Stepanow S, Wäckerlin C, Singha A, Persichetti L, Baltic R, Diller K, Patthey F, Fernandes E, Dreiser J, Šljivančanin Ž, Kummer K, Nistor C, Gambardella P, Brune H. Magnetic remanence in single atoms. Science 14 April 2016. DOI: 10.1126/science.aad9898


News Article
Site: www.nanotech-now.com

Abstract: EPFL scientists have built a single-atom magnet that is the most stable to-date. The breakthrough paves the way for the scalable production of miniature magnetic storage devices. Magnetic storage devices such as computer hard drives or memory cards are widespread today. But as computer technology grows smaller, there is a need to also miniaturize data storage. This is epitomized by an effort to build magnets the size of a single atom. However, a magnet that small is very hard to keep "magnetized", which means that it would be unable to retain information for a meaningful amount time. In a breakthrough study published in Science, researchers led by EPFL have now built a single-atom magnet that, although working at around 40 Kelvin (-233.15 oC), is the smallest and most stable to date. Magnets work because of electron spin, which is a complicated motion best imagined as a spinning top. Electrons can spin up or down (something like clockwise or anti-clockwise), which creates a tiny magnetic field. In an atom, electrons usually come in pairs with opposite spins, thus cancelling out each other's magnetic field. But in a magnet, atoms have unpaired electrons, and their spins create an overall magnetic field. A challenge today is to build smaller and smaller magnets that can be implemented in data storage devices. The problem is something called "magnetic remanence", which describes the ability of a magnet to remain magnetized. Remanence is very difficult to observe from a single atom, because environmental fluctuations can flip its magnetic fields. In terms of technology, a limited remanence would mean limited information storage for atom-sized magnets. A team of scientists led by Harald Brune at EPFL and his colleagues at ETH Zurich, have built a prototypical single-atom magnet based on atoms of the rare-earth element holmium. The researchers, placed single holmium atoms on ultrathin films of magnesium oxide, which were previously grown on a surface of silver. This method allows the formation of single-atom magnets with robust remanence. The reason is that the electron structure of holmium atoms protects the magnetic field from being flipped. The magnetic remanence of the holmium atoms is stable at temperatures around 40 Kelvin (-233.15 oC), which, though far from room temperature, are the highest achieved ever. The scientists' calculations demonstrate that the remanence of single holmium atoms at these temperatures is much higher than the remanence seen in previous magnets, which were also made up of 3-12 atoms. This makes the new single-atom magnet a worldwide record in terms of both size and stability. ### This project involved a collaboration of EPFL's Institute of Condensed Matter Physics with ETH Zurich, Swiss Light Source (PSI), Vinča Institute of Nuclear Sciences (Belgrade), the Texas A&M University at Qatar and the European Synchrotron Radiation Facility (Grenoble). It was funded by the Swiss National Science Foundation, the Swiss Competence Centre for Materials Science and Technology (CCMX), the ETH Zurich, EPFL and the Marie Curie Institute, and the Serbian Ministry of Education and Science. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


Home > Press > Spintronics, low-energy electricity take a step closer: A new class of topological insulators discovered Abstract: Topological insulators are materials that let electric current flow across their surface while keeping it from passing it through their bulk. This exotic property makes topological insulators very promising for electricity with less energy loss, spintronics, and perhaps even quantum computing. EPFL scientists have now identified a new class of topological insulators, and have discovered its first representative material, which could propel topological insulators into applications. The work, which was carried out within the framework of the EPFL-led NCCR Marvel project, is published in Nature Materials. The technological promise of topological insulators has led to an intense search for optimal natural and man-made materials with such properties. Such research combines theoretical work that predicts what properties the structure of a particular material would have. The "candidate" materials that are identified with computer simulations are then passed for experimental examination to see if their topological insulating properties match the theoretical predictions. This is what the lab of Oleg Yazyev at EPFL's Institute of Theoretical Physics has accomplished, working with experimentalist colleagues from around the world. By theoretically testing potential candidates from the database of previously described materials, the team has identified a material, described as a "crystalline phase" of bismuth iodide, as the first of a new class of topological insulators. What makes this material particularly exciting is the fact that its atomic structure does not resemble any other topological insulator known to date, which makes its properties very different as well. One clear advantage of bismuth iodide is that its structure is more ordered than that of previously known topological insulators, and with fewer natural defects. In order to have an insulating interior, a material must have as few defects in its structure as possible. "What we want is to pass current across the surface but not the interior," explains Oleg Yazyev. "In theory, this sounds like an easy task, but in practice you'll always have defects. So you need to find a new material with as few of them as possible." The study shows that even these early samples of bismuth iodide appear to be very clean with very small concentration of structural imperfections. After characterizing bismuth iodide with theoretical tools, the scientists tested it experimentally with an array of methods. The main evidence came from a direct experimental technique called "angle-resolved photoemission spectroscopy". This method allows researchers to "see" electronic states on the surface of a solid material, and has become a key technique for proving the topological nature of electronic states at the surface. The measurements, carried out at the Lawrence Berkeley National Lab, proved to be fully consistent with the theoretical predictions made by Gabriel Autès, a postdoc at Yazyev's lab and lead author of the study. The actual electron structure calculations were performed at the Swiss National Supercomputing Centre, while data analysis included a number of scientists from EPFL and other institutions. "This study began as theory and went through the entire chain of experimental verification," says Yazyev. "For us is a very important collaborative effort." His lab is now exploring further the properties of bismuth iodide, as well materials with similar structures. Meanwhile, other labs are joining the effort to support the theory behind the new class of topological insulators and propagate the experimental efforts. ### This study was carried out within the framework of NCCR Marvel, a research effort on Computational Design and Discovery of Novel Materials, created by the Swiss National Science Foundation and led by EPFL. It currently includes 33 labs across 11 Swiss institutions. The work presented here involved a collaboration of EPFL's Institute of Theoretical Physics and Institute of Condensed Matter Physics with TU Dresden; the Lawrence Berkeley National Laboratory; the University of California, Berkeley; Lomonosov Moscow State University; Ulm University; Yonsei University; Pohang University of Science and Technology; and the Institute for Basic Science, Pohang. The study was funded by the Swiss National Science Foundation, the ERC, NCCR-MARVEL, the Deutsche Forschungsgemeinschaft, the U.S. Department of Energy, and the Carl-Zeiss Foundation. Reference Autès G, Isaeva A, Moreschini L, Johannsen JC, Pisoni A, Mori R, Zhang W, Filatova TG, Kuznetsov AN, Forró L, Van den Broek W, Kim Y, Kim KS, Lanzara A, Denlinger JD, Rotenberg E, Bostwick A, Grioni M, Yazyev OV. A Novel Quasi-One-Dimensional Topological Insulator in Bismuth Iodide β-Bi4I4. Nature Materials 14 December 2015. DOI: 10.1038/nmat4488 For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Discover hidden collaborations