Time filter

Source Type

Taha M.S.,Heinrich Heine University Düsseldorf | Nouri K.,Heinrich Heine University Düsseldorf | Milroy L.G.,Institute of Complex Molecular Systems | Moll J.M.,Heinrich Heine University Düsseldorf | And 4 more authors.
PLoS ONE | Year: 2014

Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine- glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. © 2014 Taha et al.

Bartel M.,Institute of Complex Molecular Systems | Schafer A.,Institute of Complex Molecular Systems | Stevers L.M.,Institute of Complex Molecular Systems | Ottmann C.,Institute of Complex Molecular Systems
Future Medicinal Chemistry | Year: 2014

One of the proteins that is found in a diverse range of eukaryotic protein-protein interactions is the adaptor protein 14-3-3. As 14-3-3 is a hub protein with very diverse interactions, it is a good model to study various protein-protein interactions. A wide range of classes of molecules, peptides, small molecules or natural products, has been used to modify the protein interactions, providing both stabilization or inhibition of the interactions of 14-3-3 with its binding partners. The first protein crystal structures were solved in 1995 and gave molecular insights for further research. The plant analog of 14-3-3 binds to a plant plasma membrane H+-ATPase and this protein complex is stabilized by the fungal phytotoxin fusicoccin A. The knowledge gained from the process in plants was transferred to and applied in human models to find stabilizers or inhibitors of 14-3-3 interaction in human cellular pathways. © 2014 Future Science Ltd.

Loading Institute of Complex Molecular Systems collaborators
Loading Institute of Complex Molecular Systems collaborators