Institute of Cognitive Neuroscience and Psychology

Budapest, Hungary

Institute of Cognitive Neuroscience and Psychology

Budapest, Hungary
Time filter
Source Type

van den Heuvel M.I.,University of Tilburg | Donkers F.C.L.,University of Tilburg | Donkers F.C.L.,University of North Carolina at Chapel Hill | Winkler I.,Institute of Cognitive Neuroscience and Psychology | And 4 more authors.
Social Cognitive and Affective Neuroscience | Year: 2013

Maternal anxiety during pregnancy has been consistently shown to negatively affect offspring neurodevelopmental outcomes. However, little is known about the impact of positive maternal traits/states during pregnancy on the offspring. The present study was aimed at investigating the effects of the mothers mindfulness and anxiety during pregnancy on the infants neurocognitive functioning at 9 months of age. Mothers reported mindfulness using the Freiburg Mindfulness Inventory and anxiety using the Symptom Checklist (SCL-90) at ±20.7 weeks of gestation. Event-related brain potentials (ERPs) were measured from 79 infants in an auditory oddball paradigm designed to measure auditory attentiona key aspect of early neurocognitive functioning. For the ERP responses elicited by standard sounds, higher maternal mindfulness was associated with lower N250 amplitudes (P < 0.01, η2=0.097), whereas higher maternal anxiety was associated with higher N250 amplitudes (P < 0.05, η2=0.057). Maternal mindfulness was also positively associated with the P150 amplitudes (P < 0.01, η2=0.130). These results suggest that infants prenatally exposed to higher levels of maternal mindfulness devote fewer attentional resources to frequently occurring irrelevant sounds. The results show that positive traits and experiences of the mother during pregnancy may also affect the unborn child. Emphasizing the beneficial effects of a positive psychological state during pregnancy may promote healthy behavior in pregnant women. © The Author 2014.

Todd J.,University of Newcastle | Todd J.,Schizophrenia Research Institute | Heathcote A.,University of Newcastle | Whitson L.R.,University of Newcastle | And 4 more authors.
Frontiers in Neuroscience | Year: 2014

Pattern learning facilitates prediction about upcoming events. Within the auditory system such predictions can be studied by examining effects on a component of the auditory-evoked potential known as mismatch negativity (MMN). MMN is elicited when sound does not conform to the characteristics inferred from statistical probabilities derived from the recent past. Stable patterning in sequences elevates confidence in automatically generated perceptual inferences about what sound should come next and when. MMN amplitude should be larger when sequence is highly stable compared to when it is more volatile. This expectation has been tested using a multi-timescale paradigm. In this study, two sounds of different duration alternate roles as a predictable repetitive "standard" and rare MMN-eliciting "deviation." The paradigm consists of sound sequences that differ in the rate at which the roles of two tones alternate, varying from slowly changing (high stability) to rapidly alternating (low stability). Previous studies using this paradigm discovered a "primacy bias" affecting how stability in patterning impacts MMN amplitude. The primacy bias refers to the observation that the effect of longer-term stability within sequences only appears to impact MMN to the sound first encountered as deviant (the sound that is rare when the sequence commences). This study determines whether this order-driven bias generalizes to sequences that contain two tones differing in pitch. By manipulating (within-subjects) the order in which sounds are encountered as deviants the data demonstrate the two defining characteristics of primacy bias: (1) sequence stability only ever impacts MMN amplitude to the first-deviant sound; and (2) within higher stability sequences, MMN is significantly larger when a sound is the first compared to when it is the second deviant. The results are consistent with a general order-driven bias exerting modulating effects on MMN amplitude over a longer timescale. © 2014 Todd, Heathcote, Whitson, Mullens, Provost and Winkler.

Gyertyan I.,Semmelweis University | Gyertyan I.,Institute of Cognitive Neuroscience and Psychology
Trends in Pharmacological Sciences | Year: 2017

Despite the abundance of cognitive enhancer mechanisms identified in basic research, drugs approved for cognitive disorders are scarce and of limited efficacy. Although the so-called ‘gold-standard’ animal assays are well suited to the study of fundamental learning processes, they fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical validation of potential drug targets requires new approaches with higher translational value. Here I propose a rodent cognitive test system that encompasses several learning paradigms each modeling a certain human cognitive domain. Cognitive deficits are brought about by several impairing methods and a particular mechanism of action is tested on each defective cognitive function. The outcome is a cognitive efficacy pattern that should then be matched to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical indication with the greatest chance for success. © 2016 Elsevier Ltd

Frost J.D.,University of Newcastle | Winkler I.,Institute of Cognitive Neuroscience and Psychology | Provost A.,University of Newcastle | Todd J.,University of Newcastle
Biological Psychology | Year: 2016

The mismatch negativity (MMN) is conceptualized as a confidence-weighted error signal elicited when a deviation violates the predicted next-state based on regularity. The mechanisms underpinning its generation remain contentious. Smaller MMN response is a robust finding in schizophrenia and reduced amplitude may implicate impairment in prediction-error signalling. An enriched understanding of factors that influence MMN size in healthy people is a prerequisite for translating the relevance of reduced MMN in schizophrenia. This paper features two studies designed to explore factors that impact MMN in healthy individuals. Study 1 confirms that MMN amplitude does not faithfully reflect transition statistics and is susceptible to order-driven bias. In study 2, we demonstrate that an order-driven bias remains despite repeated encounters with sound sequences. These data demonstrate that factors that impact on MMN size in non-clinical groups are not fully understood and that some mechanisms driving relevance filtering are likely influenced by 'top-down' expectations. © 2015 Elsevier B.V.

Toth B.,Institute of Cognitive Neuroscience and Psychology | Toth B.,Eötvös Loránd University | Kardos Z.,Institute of Cognitive Neuroscience and Psychology | Kardos Z.,Budapest University of Technology and Economics | And 5 more authors.
Neurobiology of Learning and Memory | Year: 2014

Representations in working memory (WM) are temporary, but can be refreshed for longer periods of time through maintenance mechanisms, thereby establishing their availability for subsequent memory tests. Frontal brain regions supporting WM maintenance operations undergo anatomical and functional changes with advancing age, leading to age related decline of memory functions. The present study focused on age-related functional connectivity changes of the frontal midline (FM) cortex in the theta band (4-8. Hz), related to WM maintenance. In the visual delayed-match-to-sample WM task young (18-26. years, N=20) and elderly (60-71. years. N=16) adults had to memorize sample stimuli consisting of 3 or 5 items while 33 channel EEG recording was performed. The phase lag index was used to quantify connectivity strength between cortical regions. The low and high memory demanding WM maintenance periods were classified based on whether they were successfully maintained (remembered) or unsuccessfully maintained (unrecognized later). In the elderly reduced connectivity strength of FM brain region and decreased performance were observed. The connectivity strength between FM and posterior sensory cortices was shown to be sensitive to both increased memory demands and memory performance regardless of age. The coupling of frontal regions (midline and lateral) and FM-temporal cortices characterized successfully maintained trials and declined with advancing age. The findings provide evidence that a FM neural circuit of theta oscillations that serves a possible basis of active maintenance process is especially vulnerable to aging. © 2014 Elsevier Inc.

Kardos Z.,Institute of Cognitive Neuroscience and Psychology | Kardos Z.,Budapest University of Technology and Economics | Toth B.,Institute of Cognitive Neuroscience and Psychology | Toth B.,Eötvös Loránd University | And 5 more authors.
Neuroscience | Year: 2014

Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7. Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26. years, N= 20) and old (60-71. years, N= 16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. © 2014 IBRO.

Pongracz A.,Institute for Technical Physics and Material Science | Fekete Z.,Institute for Technical Physics and Material Science | Marton G.,Institute for Technical Physics and Material Science | Marton G.,Institute of Cognitive Neuroscience and Psychology | And 5 more authors.
Sensors and Actuators, B: Chemical | Year: 2013

In this paper, the fabrication method, electrical and fluidic characterization and in vivo testing of the first deep brain silicon multielectrode with monolithically integrated fluidic channel are presented in details. Micromachined silicon probes with monolithically integrated microfluidic channels up to 70 mm length have been realized to perform simultaneous electrical recording and drug delivery in deep brain regions. The achieved cross-sectional dimension of the microchannels is in the range of 5-30 μm, while the length of the channel can be even 70 mm long.Fabrication process and integration of the drug delivery channels and the Pt recording sites are described. Electrical characterization and impedance tuning of the developed probes are also demonstrated. The functionality of the microfluidic channels is verified and the hydrodynamic characteristics (flow rate vs. injection pressure) are measured in the case of several length and cross-sections.Feasibility of our integration concept is proved by locally injected bicuculline in the cortex and in the thalamical regions of rat brain in vivo, while simultaneously recording the electrical signals of the stimulated neurons on four different electrical channels. © 2013 Elsevier B.V.

Mill R.W.,MRC Institute of Hearing Research | Bohm T.M.,Institute of Cognitive Neuroscience and Psychology | Bohm T.M.,Budapest University of Technology and Economics | Bendixen A.,University of Leipzig | And 3 more authors.
PLoS Computational Biology | Year: 2013

Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives-a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the dynamics of human perception in auditory streaming. © 2013 Mill et al.

Todd J.,University of Newcastle | Todd J.,Schizophrenia Research Institute | Heathcote A.,University of Newcastle | Mullens D.,University of Newcastle | And 4 more authors.
Brain Topography | Year: 2014

Repetitious patterns enable the auditory system to form prediction models specifying the most likely characteristics of subsequent sounds. Pattern deviations elicit mismatch negativity (MMN), the amplitude of which is modulated by the size of the deviation and confidence in the model. Todd et al. (Neuropsychologia 49:3399-3405, 2011; J Neurophysiol 109:99-105, 2013) demonstrated that a multi-timescale sequence reveals a bias that profoundly distorts the impact of local sound statistics on the MMN amplitude. Two sounds alternate roles as repetitious "standard" and rare "deviant" rapidly (every 0.8 min) or slowly (every 2.4 min). The bias manifests as larger MMN to the sound first encountered as deviant in slow compared to fast changing sequences, but no difference for the sound first encountered as a standard. We propose that the bias is due to how Bayesian priors shape filters of sound relevance. By examining the time-course of change in MMN amplitude we show that the bias manifests immediately after roles change but rapidly disappears thereafter. The bias was reflected in the response to deviant sounds only (not in response to standards), consistent with precision estimates extracted from second order patterns modulating gain differentially for the two sounds. Evoked responses to deviants suggest that pattern extraction and reactivation of priors can operate over tens of minutes or longer. Both MMN and deviant responses establish that: (1) priors are defined by the most proximally encountered probability distribution when one exists but; (2) when no prior exists, one is instantiated by sequence onset characteristics; and (3) priors require context interruption to be updated. © 2013 Springer Science+Business Media.

Mullens D.,University of Newcastle | Woodley J.,University of Newcastle | Whitson L.,University of Newcastle | Provost A.,University of Newcastle | And 5 more authors.
Psychophysiology | Year: 2014

The role in which two tones are first encountered in an unattended oddball sequence affects how deviance detection, reflected by mismatch negativity, treats them later when the roles reverse: a "primacy bias." We tested whether this effect is modulated by previous behavioral relevance assigned to the two tones. To this end, sequences in which the roles of the two tones alternated were preceded by a go/no-go task in which tones were presented with equal probability. Half of the participants were asked to respond to the short sounds, the other half to long sounds. Primacy bias was initially abolished but returned dependent upon the go-stimulus that the participant was assigned. Results demonstrate a long-term impact of prior learning on deviance detection, and that even when prior importance/equivalence is learned, the bias ultimately returns. Results are discussed in terms of persistent go-stimulus specific changes in responsiveness to sound. © 2014 Society for Psychophysiological Research.

Loading Institute of Cognitive Neuroscience and Psychology collaborators
Loading Institute of Cognitive Neuroscience and Psychology collaborators