Time filter

Source Type

Stephens N.,Ministry of Health | Vogelnest L.,Taronga Zoo | Lowbridge C.,Ministry of Health | Christensen A.,Ministry of Health | And 4 more authors.
Epidemiology and Infection | Year: 2013

Mycobacterium tuberculosis is primarily a pathogen of humans. Infections have been reported in animal species and it is emerging as a significant disease of elephants in the care of humans. With the close association between humans and animals, transmission can occur. In November 2010, a clinically healthy Asian elephant in an Australian zoo was found to be shedding M. tuberculosis; in September 2011, a sick chimpanzee at the same zoo was diagnosed with tuberculosis caused by an indistinguishable strain of M. tuberculosis. Investigations included staff and animal screening. Four staff had tuberculin skin test conversions associated with spending at least 10 hours within the elephant enclosure; none had disease. Six chimpanzees had suspected infection. A pathway of transmission between the animals could not be confirmed. Tuberculosis in an elephant can be transmissible to people in close contact and to other animals more remotely. The mechanism for transmission from elephants requires further investigation. Copyright © Cambridge University Press 2013.


Ward K.A.,New South Wales Health | McAnulty J.M.,New South Wales Health | Iwasenko J.M.,South Eastern Area Laboratory Services | Dwyer D.E.,Institute of Clinical Pathology and Medical Research
Emerging Infectious Diseases | Year: 2010

To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.


Xue G.,Capital Institute of Pediatrics | Wang Q.,Institute of Clinical Pathology and Medical Research | Yan C.,Capital Institute of Pediatrics | Jeoffreys N.,Institute of Clinical Pathology and Medical Research | And 4 more authors.
Journal of Clinical Microbiology | Year: 2014

Mycoplasma pneumoniae is an important cause of community-acquired pneumonia (CAP). In this study, M. pneumoniae strains in PCR-positive specimens collected from patients in Sydney, Australia (30 samples), and Beijing, China (83 samples), were characterized using multilocus variable-number tandem-repeat (VNTR) analysis (MLVA), P1-restriction fragment length polymorphism (RFLP) analysis, and sequencing of domain V of the 23S rRNA gene to compare genotype distribution and macrolide resistance rates between locations. Eighteen distinct MLVA types were identified in specimens from Sydney, of which 10 were known (types E, G, J, M, N, P, U, V, S, and X) and 8 previously unknown. Strains were equally distributed between P1-RFLP type 1 and type 2 variants. Among samples from Beijing, MLVA types E, G, J, P, U, X, and Z and four new types were identified. Most specimens belonged to P1-RFLP type 1. A nomenclature based on five VNTR loci is proposed to designate MLVA patterns. Macrolide resistance-associated mutations were identified in only 1 of 30 specimens (3.3%) from Sydney and 71 of 83 (85.5%) from Beijing (P<0.05). This study demonstrated that although multiple individual M. pneumoniae strains were circulating in Beijing, the genotypes were less diverse than those in Sydney. However, the greatest regional difference was in the incidence of macrolide resistance, which may reflect differences in antibiotic use and/or measures in resistance control. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


Hua V.M.,University of New South Wales | Abeynaike L.,University of New South Wales | Glaros E.,University of New South Wales | Campbell H.,University of New South Wales | And 6 more authors.
Blood | Year: 2015

A subpopulation of platelets fulfills a procoagulant role in hemostasis and thrombosis by enabling the thrombin burst required for fibrin formation and clot stability at the site of vascular injury. Excess procoagulant activity is linked with pathological thrombosis. The identity of the procoagulant platelet has been elusive. The cell death marker 4-[N-(S-glutathionylacetyl)amino]phenylarsonous acid (GSAO) rapidly enters a subpopulation of agonist-stimulated platelets via an organic anion-transporting polypeptide and is retained in the cytosol through covalent reaction with protein dithiols. Labeling with GSAO, together with exposure of P-selectin, distinguishes necrotic from apoptotic platelets and correlates with procoagulant potential. GSAO+ platelets form in occluding murine thrombi after ferric chloride injury and are attenuated withmegakaryocyte-directed deletionof the cyclophilin D gene. These platelets forma procoagulant surface, supporting fibrin formation, and reduction in GSAO+ platelets is associated with reduction in platelet thrombus size and fibrin formation. Analysis of platelets from human subjects receiving aspirin therapy indicates that these procoagulant platelets form despite aspirin therapy, but are attenuated by inhibition of the necrosis pathway. These findings indicate that the major subpopulation of platelets involved in fibrin formation are formed via regulated necrosis involving cyclophilin D, and that they may be targeted independent of platelet activation. © 2015 by The American Society of Hematology.


Chen X.,Capital Medical University | Wang B.,University of New South Wales | Yang W.,Capital Medical University | Kong F.,Institute of Clinical Pathology and Medical Research | And 5 more authors.
Journal of Clinical Microbiology | Year: 2014

Rapid and accurate detection of multidrug resistance (MDR) in Mycobacterium tuberculosis is essential to improve treatment outcomes and reduce global transmission but remains a challenge. Rifampin (RIF) resistance is a reliable marker of MDR tuberculosis (TB) since by far the majority of RIF-resistant strains are also isoniazid (INH) resistant. We have developed a rapid, sensitive, and specific method for detecting the most common mutations associated with RIF resistance, in the RIF resistance determining region (RRDR) of rpoB, using a cocktail of six padlock probes and rolling circle amplification (RCA). We used this method to test 46 stored M. tuberculosis clinical isolates with known RIF susceptibility profiles (18 RIF resistant, 28 susceptible), a standard susceptible strain (H37Rv, ATCC 27294) and 78 M. tuberculosis culture-positive clinical (sputum) samples, 59 of which grew RIF-resistant strains. All stored clinical isolates were correctly categorized, by the padlock probe/RCA method, as RIF susceptible or resistant; the sensitivity and specificity of the method, for direct detection of phenotypically RIF-resistant M. tuberculosis in clinical specimens, were 96.6 and 89.5%, respectively. This method is rapid, simple, and inexpensive and has the potential for high-throughput routine screening of clinical specimens for MDR M. tuberculosis, particularly in high prevalence settings with limited resources. © 2014, American Society for Microbiology. All Rights Reserved.


Favaloro E.J.,Institute of Clinical Pathology and Medical Research
Blood Transfusion | Year: 2016

von Willebrand disease (VWD) is reportedly the most common bleeding disorder and is caused by deficiencies and/or defects in the adhesive plasma protein von Willebrand factor (VWF). Functionally, normal VWF prevents bleeding by promoting both primary and secondary haemostasis. In respect to primary haemostasis, VWF binds to both platelets and sub-endothelial matrix components, especially collagen, to anchor platelets to damaged vascular tissue and promote thrombus formation. VWF also stabilises and protects factor VIII in the circulation, delivering FVIII to the site of injury, which then facilitates secondary haemostasis and fibrin formation/ thrombus stabilisation. As a result of this, patients with VWD suffer a bleeding diathesis reflective of a primary defect caused by defective/deficient VWF, which in some patients is compounded by a reduction in FVIII. Management of VWD, therefore, chiefly entails replacement of VWF, and sometimes also FVIII, to protect against bleeding. The current report principally focuses on the future potential for "personalised" management of VWD, given the emerging options in recombinant therapies. Recombinant VWF has been developed and is undergoing clinical trials, and this promising therapy may soon change the way in which VWD is managed. In particular, we can envisage a personalised treatment approach using recombinant VWF, with or without recombinant FVIII, depending on the type of VWD, the extent of deficiencies, and the period and duration of treatment. © SIMTI Servizi Srl.


Gray T.J.,St Vincents Hospital | Webb C.E.,Institute of Clinical Pathology and Medical Research | Webb C.E.,University of Sydney
International Journal of General Medicine | Year: 2014

The resurgence of West Nile virus (WNV) in North America and Europe in recent years has raised the concerns of local authorities and highlighted that mosquito-borne disease is not restricted to tropical regions of the world. WNV is maintained in enzootic cycles involving, primarily, Culex spp. mosquitoes and avian hosts, with epizootic spread to mammals, including horses and humans. Human infection results in symptomatic illness in approximately one-fifth of cases and neuroinvasive disease in less than 1% of infected persons. The most consistently recognized risk factor for neuroinvasive disease is older age, although diabetes mellitus, alcohol excess, and a history of cancer may also increase risk. Despite the increasing public health concern, the current WNV treatments are inadequate. Current evidence supporting the use of ribavirin, interferon α, and WNV-specific immunoglobulin are reviewed. Nucleic acid detection has been an important diagnostic development, which is particularly important for the protection of the donated blood supply. While effective WNV vaccines are widely available for horses, no human vaccine has been registered. Uncertainty surrounds the magnitude of future risk posed by WNV, and predictive models are limited by the heterogeneity of environmental, vector, and host factors, even in neighboring regions. However, recent history has demonstrated that for regions where suitable mosquito vectors and reservoir hosts are present, there will be a risk of major epidemics. Given the potential for these outbreaks to include severe neuroinvasive disease, strategies should be implemented to monitor for, and respond to, outbreak risk. While broadscale mosquito control programs will assist in reducing the abundance of mosquito populations and subsequently reduce the risks of disease, for many individuals, the use of topical insect repellents and other personal protective strategies will remain the first line of defense against infection. © 2014 Gray and Webb.


Iredell J.,University of Sydney | Brown J.,Institute of Clinical Pathology and Medical Research | Tagg K.,University of Sydney
BMJ (Online) | Year: 2016

Resistance of the Enterobacteriaceae to antibiotics, especially of the β lactam type, is increasingly dominated by the mobilization of continuously expressed single genes that encode efficient drug modifying enzymes. Strong and ubiquitous selection pressure has seemingly been accompanied by a shift from "natural" resistance, such as inducible chromosomal enzymes, membrane impermeability, and drug efflux, to the modern paradigm of mobile gene pools that largely determine the epidemiology of modern antibiotic resistance. In this way, antibiotic resistance is more available than ever before to organisms such as Escherichia coli and Klebsiella pneumoniae that are important causes of major sepsis. Modulation of the phenotype by host bacteria makes gene transmission less obvious and may in part explain why tracking and control of carbapenem resistance has been particularly problematic in the Enterobacteriaceae. This review discusses the underlying principles and clinical implications of the mobility and fixation of resistance genes and the exploitable opportunities and potential threats arising from apparent limitations on diversity in these mobile gene pools. It also provides some illustrative paradoxes and clinical corollaries, as well as a summary of future options.


Choy B.,Westmead Hospital | Choy B.,University of Sydney | Chou S.,Institute of Clinical Pathology and Medical Research | Anforth R.,Westmead Hospital | And 3 more authors.
American Journal of Dermatopathology | Year: 2014

Panniculitis is a rare complication of BRAF inhibitor therapy that is used to treat patients with BRAF-mutated metastatic melanoma. We present a clinicopathologic review of 9 patients who developed panniculitis while on BRAF inhibitor therapy. In 13% of patients on vemurafenib, 3% of patients on dabrafenib and 10% on combination of dabrafenib + trametinib, tender erythematous nodular lesions of panniculitis appeared on legs, arms and trunk. Histological evaluation of 8 biopsies from 7 patients showed predominantly neutrophilic infiltrate in 4, lymphocytic in 1, and mixed in 3. Lesions with neutrophilic infiltrate appeared in earlier stages of treatment than those with mixed or lymphocytic infiltrate. All biopsies showed lobular involvement and 5 also had a septal component. In addition, 1 biopsy had lichenoid inflammation in the epidermis and the other had evidence of vasculitis. Most patients responded to conservative medical management without the need to reduce or to stop BRAF inhibitor therapy. Panniculitis seems to be a rare class effect of BRAF inhibitors that is predominantly lobular and neutrophilic, although other patterns can be seen. © 2014 Lippincott Williams and Wilkins.


PubMed | University of Sydney and Institute of Clinical Pathology and Medical Research
Type: | Journal: BMJ (Clinical research ed.) | Year: 2016

Resistance of the Enterobacteriaceae to antibiotics, especially of the lactam type, is increasingly dominated by the mobilization of continuously expressed single genes that encode efficient drug modifying enzymes. Strong and ubiquitous selection pressure has seemingly been accompanied by a shift from natural resistance, such as inducible chromosomal enzymes, membrane impermeability, and drug efflux, to the modern paradigm of mobile gene pools that largely determine the epidemiology of modern antibiotic resistance. In this way, antibiotic resistance is more available than ever before to organisms such as Escherichia coli and Klebsiella pneumoniae that are important causes of major sepsis. Modulation of the phenotype by host bacteria makes gene transmission less obvious and may in part explain why tracking and control of carbapenem resistance has been particularly problematic in the Enterobacteriaceae. This review discusses the underlying principles and clinical implications of the mobility and fixation of resistance genes and the exploitable opportunities and potential threats arising from apparent limitations on diversity in these mobile gene pools. It also provides some illustrative paradoxes and clinical corollaries, as well as a summary of future options.

Loading Institute of Clinical Pathology and Medical Research collaborators
Loading Institute of Clinical Pathology and Medical Research collaborators